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ABSTRACT
Head-worn wearables, such as consumer-grade EEG headsets de-
ployed in Brain Computer Interfaces (BCI), are getting popularity in
the gaming and entertainment industry, and for people with certain
disabilities. However, the increasing popularity of these wearables
creates a significant privacy risk. For instance, tech companies are
intending to use brainwave devices to detect workers’ emotional
state and mental condition. There are AI techniques that can learn
what people are looking at in real-time. Silently conversing with the
computing system is now possible using neuromuscular signals, for
instance, untold digit recognition with higher accuracy is possible,
which can retrieve untold PIN or password. These applications can
reveal more private information than designated benign purpose,
such as, while detecting performance of worker, sensitive infor-
mation like Parkinson’s disease, substance abuse disorder, heart
disease, can be revealed from brainwave. The consequences of these
privacy leakages may be potentially devastating, such as tracking
users for targeted advertisements and launching targeted attacks
against users.

In this paper, we analyze current devices, explore previously
studied attacks, research efforts to extract information from brain-
wave and analyze and synthesize potential future attacks from
the current deployment. This systematization will provide right
direction towards ensuring privacy risk of BCI devices, which is
a pre-requisite to building future defense mechanisms against the
attacks.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
Side-channel attacks, Brainwave security & privacy, Wireless or
mobile security for cyber-physical systems, SoK

ACM Reference Format:
Anuradha Mandal and Nitesh Saxena. 2022. SoK: Your Mind Tells a Lot
About You: On the Privacy Leakage via Brainwave Devices. In Proceedings
of the 15th ACM Conference on Security and Privacy in Wireless and Mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9216-7/22/05. . . $15.00
https://doi.org/10.1145/3507657.3528541

Networks (WiSec ’22), May 16–19, 2022, San Antonio, TX, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3507657.3528541

1 INTRODUCTION
Wearable devices are getting extensively deployed in activity track-
ing and monitoring in day-to-day life. These devices are examples
of Internet-of-Things which come in the form of electronic sensors
that enable objects to exchange data through the Internet with
another electronic device without human intervention. The BCI
headsets are getting popularity in the gaming and entertainment in-
dustries. Consumer-grade BCI devices are easily accessible and are
being used in a variety of applications, such as relaxation training,
video games and hand-free keyboard.

Scientists are working extensively on BCI technology to offer
a direct link between the gray matter of the human brain and the
computing system. The researchers are working to make human
operate-computer using their brains [8, 13]. Mike Ambinder, a psy-
chologist in Valve, mentioned [15] gaming industry approaches
of naturalistic method to control the gaming environment which
could improve the connection between the virtual and real-world
instead of using a typical 17-button controller [3]. While the game-
play may need eye-tracking data, sweat level, physiological state
to convey command to the computing system, but the BCI headset
being used in gameplay can measure extra things like heart rate,
facial expression, body temperature etc.

With the increasing popularity of BCI devices, the privacy leak-
age linked with the sensors have become a research area to be
explored. For example, some tech companies are mining data from
workers brain via BCI devices in an industrial setting to monitor
the emotional state of workers to increase productivity, in such
scenario privacy can be compromised very easily by listening onto
brainwaves and extracting private information from it (i.e., emo-
tional state) [22]. A trial of BCI devices used in a school in China
to monitor pupils’ brainwaves has been halted due to the privacy
concern of the pupils [81]. An AI has been created that can draw
what a person is looking at in real-time by reading and extracting
brainwave via EEG headset [32]. Malicious BCI application can take
advantage of benign purpose by recording brainwaves, analyzing
data and extracting features to classify and get private informa-
tion from app-users’ brain without the consent or awareness [41].
For relaxation training, BCI headsets are widely used and this can
potentially leak private information using brainwaves.

Moreover, brainwave signals can be accessed by smartphone ap-
plications without users’ permission [21], which can continuously
record brainwaves and leak sensitive information. Malicious appli-
cations can continuously record the users’ activities passively using
brainwaves, and they can release this information to malicious
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third parties for future attacks. In the future, BCI devices might lead
technology to offer fast and technologically advanced life. This type
of deployment of BCI and availability to end users and the future
BCI deployment, raise privacy concern for the end users. Figure 1
represents the higher-level overview of threat: EEG signal is being
recorded by a malicious app or passively being recorded by the
attacker from smartphone, computer, javascript enabled website.
Afterward, the attacker use the signal to extract features using its
own classification and learn private sensitive information about the
victim. Private information could be mental and emotional state,
medical condition, alcoholism, age group, PIN, password etc. which
can later be useful for malicious purpose, i.e., targeted advertise-
ments, selling data to third party, etc.

Emotional and Mental State
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Alcoholism Age Group

PIN, Password, Bank Information
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Gaming Applications on 
Victim’s Device
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Figure 1: Overview of Brainwave Attacks
In this systematization, we surveyed research papers and sys-

tematized the privacy leakage via consumer-grade EEG headsets
by studying the existing method to read neural signals, existing
passive and active attacks and benign BCI enabled applications and
research works which can reveal private information about user
when malicious party gets access to data. Briefly, the contributions
of this paper are as follows:

(1) We provide a brief overview of consumer-grade brain map-
ping technique, components of BCI system in order to un-
derstand the threat related to BCI (Sec. 2) and available BCI
devices (Sec. 3).

(2) We present a threat model of a compromised BCI system
which can steal brainwaves (Sec. 4).

(3) We provide a detailed review and systemization of studied
passive (Sec. 5.1) and active (Sec. 5.2) attacks to extract pri-
vate information from brainwaves.

(4) Next, we present a systemization of existing works which
demonstrates extraction of information from brainwaves for
benign purpose, later which can be used as ground truth
for extracting private sensitive information for malicious
purpose (Sec. 5.3).

(5) We present a brief systemization of BCI use in different
sectors and the privacy implication related to it (Sec. 6).

(6) Lastly, we present and evaluate existing research efforts
on privacy enhancement to protect sensitive brainwave-
information (Sec.7).

2 BACKGROUND
As a background of this paper, we discuss about brain mapping
technique being used in commercial industry, brain regions’ func-
tionalities and information gathered from them, components of a
BCI system.

2.1 Consumer-Grade Brain Computer Interface
Brain mapping techniques are getting popularity in gaming and
entertainment industry, as a form of VR, as a portable headset to give
commands to games, to monitor students’ attention level, to detect
meditation status during yoga. There are several consumer-grade
brain computer interfaces available on market today. These BCI
devices mainly use Electroencephalography (EEG) signal to record
brainwave. EEG devices are typically noninvasive, with electrode
placed alongwith scalp. Clinically EEG is used to determine changes
in brain activity especially epilepsy or another seizure disorder
which helps to identify brain tumor, brain damages from head injury,
inflammation of the brain (encephalitis), stroke, sleep disorders
etc. EEG is used extensively in neuroscience, cognitive science,
cognitive psychology, neurolinguistics, psychophysiological and
computer science research.

2.2 Functionalities of Different Regions of
Human Brain

In this section, we discuss about brief of human brain’s different re-
gions’ functionalities which will give a good direction to understand
what positioning of sensors can gather what type of information.
Discussion below gives a high-level overview of what type of data
can be learnt from different regions of brain using neuro-imaging
techniques. Table 1 is a brief snapshot of this discussion.
Function of Forebrain: The Cerebrum, also known as the cerebral
cortex, the largest part of the human brain is associated with higher
brain function such as thought and action. The Cerebrum is divided
into two cerebral hemispheres and each hemisphere is convention-
ally divided into four lobes – the frontal, temporal, parietal, and
occipital lobes [5]. The frontal lobe is associated with brain’s abil-
ity to reason, organize, plan, speak, move, make facial expressions,
serial task, problem solving, control inhibition, spontaneity, initiate
and self-regulate behaviors, pay attention, remember and control
emotions [6]. The parietal lobe controls our complex behaviors,
including senses, such as vision, touch, body awareness and spatial
orientation, integrates sensory information from various parts of
our body, visuospatial processing, language comprehension, ability
to construct, body positioning and movement, neglect/inattention,
left-right differentiation and self-awareness/insight [12]. The oc-
cipital lobe is associated with our visual processing, such as visual
recognition, visual attention, spatial analysis (moving in a 3-D
world) and visual perception of body language; such as postures,
expressions and gestures [11]. The temporal lobe is associated
with processing our perception and recognition of auditory stim-
uli (including our ability to focus on one sound among many, like
listening to one voice among many at a party), comprehending
spoken language, verbal memory, visual memory and language pro-
duction (including fluency and word-finding), general knowledge
and autobiographical memories [14].
Function ofMidbrain: The midbrain is located below the cerebral
cortex, and the primary role of the midbrain is to act as a sort of
relay station for our visual and auditory systems [7].
Function of Hindbrain: The cerebellum is a major structure of
the hindbrain that is located near brainstem which is responsible
for coordinating voluntary movements and functions including
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Table 1: Brain Regions’ Functionalities and Information Pro-
cessing

Regions of
Brain

lobes Functionality

Cerebral Cor-
tex

Frontal Lobe [6] Reasoning, organize, plan, speak, move, make
facial expressions, serial task, problem solving,
control inhibition, spontaneity, initiate and self-
regulate behaviors, pay attention, remember
and control emotions

Parietal Lobe [12] Complex behaviors like vision, touch,
body awareness and spatial orientation,
body positioning and movement, ne-
glect/inattention, left-right differentiation
and self-awareness/insight etc.

Occipital Lobe [11] Visual processing like visual recognition, vi-
sual attention, spatial analysis (moving in a 3-D
world) and visual perception of body language;
such as postures, expressions and gestures

Temporal Lobe [14] Processing perception and recognition of audi-
tory stimuli

Subcortical Re-
gion

Cerebrum and Cere-
bellum [1]

Digestion, breathing, heart rate, and informa-
tion transfer from the cerebrum to cerebellum

motor skills such as balance, coordination, posture (eye movements
and movements associated with speaking), mental function (think-
ing, language processing and mood, attention, fear response, and
pleasure or reward response), body balance and posture (walking,
standing), motor learning (riding a bike or hitting a baseball), vision
[4].

2.3 Components of BCI System
A BCI system consists of the following components: signal ac-
quisition, preprocessing, feature extraction, classification and ap-
plication interfaces [69]. Figure 2 demonstrates components of a
standard BCI system.

Signal	
Enhancement/Filte
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using	testing	set	
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Control 

P300 Speller
Control 

Neuro Game 
Control

Figure 2: Components of a BCI systems.

SignalAcquisition: Signal acquisition is themeasurement of brain
signals using a particular sensor modality (i.e., scalp or intracranial
electrodes for electrophysiologic activity). The signals are amplified
to levels suitable for electronic processing. The signals are then
digitized and transmitted to a computing system.
Feature Extraction: Feature extraction is the process of analyzing
the digital signals to distinguish pertinent signal characteristics
(i.e., signal features related to the person’s intent) from extraneous
content and representing them in a compact form suitable for trans-
lation into output commands. The most commonly extracted signal

features in current BCI systems are time-triggered EEG response
amplitudes and latencies, power within specific EEG frequency
bands, or firing rates of individual cortical neurons. Environmental
artifacts and physiologic artifacts such as electromyographic sig-
nals are avoided or removed to ensure accurate measurement of
the brain signal features.

Feature Translation: The resulting signal features are then passed
to the feature translation algorithm, which converts the features
into the appropriate commands for the output device (i.e., com-
mands that accomplish the user’s intent). The translation algorithm
should be dynamic to accommodate and adapt to spontaneous or
learned changes in the signal features and to ensure that the user’s
possible range of feature values covers the full range of device
control.

Application Interfaces: The commands from the feature trans-
lation algorithm operate the external device, providing functions
such as letter selection, cursor control, robotic arm operation, and
decision making.

3 INSTANCES OF CURRENT BCI DEVICES
In this section, we discuss the current BCI devices available in the
market and are being analyzed for better results. Table 2 represents
a list of BCI devices and their functionalities.

3.1 EEG devices in Commercial Use:
Neurosky Mindwave Mobile EEG headsets are result of EEG
biosensor technology researchwhich is portable and easy-to-control
and all in one wearable package. This device works by monitoring
these electrical impulses with a forehead sensor FP1, record signal
at 512Hz. It measures electrical signals and calculated interpreta-
tions are then output as digital messages to the computing system.
This headset is being used for educational training, attention and
meditation measurements, gaming and entertainment etc. [9].

B-Alert X-Series device is being used for operational neuroscience
applications and cognitive state assessments which allows high
quality data to be acquired in real or virtual environments by per-
sonnel with limited technical training [2]. The X-10 version has 9
high-quality EEG channels (F3, F4, FOz, P3, P4, POz, C3, C4, COz)
and 1 optional channel for ECG, EMG, or EOG which records signal
at 256Hz. B-alert X-24 has 20 EEG channels in sensor positioning
to Fz, F1, F2, F3, F4, Cz, C1, C2, C3, C4, CPz, Pz, P1, P2, P3, P4, POz,
Oz, O1, O2.

Emotive Headsetsmonitor brain activity. Its performance metrics
provide real-time detection of cognitive states, so users can get
valuable insights from the headset right away [28]. The Emotive
Epoc uses 14 EEG channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, AF4) and Emotive Insight uses 5 EEG channels (AF3,
AF4, T7, T8, Pz) with a sampling rate of 2048 Hz (internal) to collect
brain signal for performance measurements.

NextMind is a visual EEG headset with a dry electrode which
can be combined with headbands, hats, and AR/VR headsets. This
headset allows users to control the visual interface in real-world
[10].
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Table 2: Instances of Current BCI, Sensor Placements and Tasks

Headsets Sensors Tasks
NeuroSky [9] EEG: FP1 Educational training, gaming and entertainments.
Emotive Headsets [28] Emotive Epoc (EEG: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4),

Emotive Insight (EEG: AF3, AF4, T7, T8, Pz)
Records cognitive states

NextMind [10] 9 electrodes Controls visual interfaces
B-Alert X-Series [2] B-Alert X10 (EEG: F3, F4, FOz, P3, P4, POz, C3, C4, COz), B-Alert X24 (EEG:

Fz, F1, F2, F3, F4, Cz, C1, C2, C3, C4, CPz, Pz, P1, P2, P3, P4, POz, Oz, O1, O2)
Records cognitive state/human factors assessments

Thinking Cap [38] EEG sensors and Bluetooth speaker Measure the self-esteem of children
AlterEgo [36] Bone conducted headphone Detects silent speech
AttentivU [39] EEG, EOG Cognitive load, fatigue, engagement, and focus (EEG), eye movements (EOG)

3.2 EEG devices on Research Lab:
AlterEgo, a wearable interface that allows user to silently converse
with a computing device without any voice or any discernible move-
ments can compromise users’ privacy by neuromuscular signals
in internal speech articulators [36]. Unlike head-worn wearables,
this interface uses face and neck area for silent speech signals and
accuracy of digit recognition is 92% which may lead to privacy
leakage when someone recalls PINs and passwords.

Thinking Cap is a wearable system that communicates praise for
effort and ability in order to improve the resilience and self-esteem
of the student wearing it to positively influence their motivation
and academic achievements (momentary learning). It is built into a
"Sorting Hat" from the Harry Potter franchise, with an embedded
electroencephalography (EEG) headset and a Bluetooth speaker
which can recognize several mental processes like motor, auditory,
or visual imagery as well as cognitive load and engagement level
of the child [38].

AttentivU uses both EEG and EOG for real-time monitoring of
physiological data. The device is designed as a socially acceptable
pair of glasses and employs silver electrodes [39].

4 METHODS OF EXTRACTING PRIVATE INFO
FROM A COMPROMISED BCI SYSTEM

There are different ways to run attack on a brainwave signal. For
example, an attacker can get access to a signal from cloud storage
where the signal is being stored or directly by hijacking commu-
nication channel. An attacker can also launch an attack remotely
using javascript while the victim is connected to a malicious web-
site. Moreover, EEG signals can be collected using Bluetooth from
a neural-based application (e.g., a smartphone application) without
user intervention. A malicious app could take this advantage to get
victim’s neural signal and later use it for malicious purposes.

Bonaci et al. [21] mentioned existing BCI open-development plat-
forms typically grant every application developer full control over
all components. The threat model discussed in the paper, assumed
an attacker has access to all of the resources: acquisition system,
application, signal processing system, feature extraction, decoding
algorithm. The first type of attacker extracts users’ private informa-
tion by hijacking the legitimate components of a BCI system. Such
attacker exploits for malicious purposes those feature extraction
and decoding algorithms that are intended for the legitimate BCI
applications. The second type of attacker extracts users’ private
information by adding or replacing the legitimate BCI components.
Such attacker implements additional feature extraction and decod-
ing algorithms, and either replaces or supplements the existing BCI
components with the additional malicious code.

From Figure 3, we can observe the difference between two types
of attacker is only in the structure of the “brain malware” compo-
nent. To steal private information through brainwaves, the attacker
interacts with users by presenting them with specific sets of stimuli
and recording their responses to the presented stimuli. There are
several well-established methods of presenting stimuli to users:
Oddball paradigm - a technique where users are asked to react
to specific stimuli, referred to as target stimuli, hidden as rare oc-
currences in a sequence of more common, non-target stimuli [36].
Guilty knowledge test - a technique based on the hypothesis that a
familiar stimulus evokes a different response when viewed in the
context of similar, but unfamiliar items [66]. Priming - a technique
that uses an implicit memory effect where one stimulus may have
an influence on a person’s response to a later stimulus [73].

5 SYSTEMATIZATION AND EVALUATION OF
BCI ATTACKS

From this section, we learn about existing passive and active attacks
which utilized different attack scenarios to learn about user’s PIN,
password, age group, alcoholism, face recognition etc.

5.1 Previously Studied Passive Attacks
The attack by Neupane et al., PEEP [81] was a passive attack which
can passively eavesdrop and can get access to victim’s brainwave
while victim is typing sensitive private information like PINs, pass-
word on keyboard/keypad. PEEP is highly surreptitious because
PEEP requires passive monitoring of brain signals, not deliberate,
and active strategies which can trigger suspicion and can be de-
tected by the user. Also, PEEP achieves orders of magnitude higher
accuracies compared to prior active PIN inferring attacks. When a
user may enter passwords or private credentials to their computers
or mobile phones, while the BCI device is being worn by the user.
At this point, a malicious application captures EEG signals when
users are typing passwords or PINs in virtual or physical keyboards.
Virtual keyboard PIN, virtual ATM PIN, physical numeric keypad
PIN entry, physical keyboard password entry, these four different
scenarios were tested with different parameters such as EEG de-
vices (Emotiv vs. B-Alert), keypads (virtual vs. real), and data types
(4-digit pin vs. 6-character password). Virtual Keyboard PIN Entry
(VKPE) Attack measures the visual and metal of processing digits
while a user is typing. In the VKPE attack user enters a 4-digit PIN
codes in the text box using the mouse, fewer numbers than the
previous scenario. In this attack scenario, the participants were
asked to enter a 4-digit PIN code in a text box using a mouse.

The virtual key was flashed for 500ms or till the next key was
pressed on the keyboard. This procedure was followed to make sure
the participants are clicking on the right digit. In this attack, the
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Figure 3: A simplified diagram of a compromised BCI system. Type 1 Attacker: exploits the legitimate feature extraction and
decoding algorithms, and Type 2 Attacker: implements additions algorithms for malicious applications and either replaces or
supplements the legitimate BCI resources

Table 3: List of Attack literatures, Classifiers Used to Extract Data and Retrieved Private Information from Brainwave

Studied Attacks Attacker’s Intuition Classifiers Success Rate
Feasibility of Side-Channel
Attacks [56]

Learn 4-digit PIN, bank information, birth month,
residence area

Boosted logistic regression, Stepwise Linear Discriminant Anal-
ysis, Fisher’s linear discriminant analysis (LDA), Stepwise Lin-
ear Discriminant Analysis (SWLDA)

10%(PIN), 30%(bank information), 43%(Birth
month), 30%(residence)

Subliminal brain activity [29] Identifies known face and unknown face from an
extremely short period of time

Band pass filtering, Machine learning classification 20.84%

PEEP [81] Detects 4-digit PIN (VKPE, VAPE, PNKPE), 6-
character password (PKPE)

Instance Based Learning (IBL), KStar algorithm, Naive Bayes
(NB)

43% (VKPE), 33% (VAPE), 46% (PNKPE), 35%
(PKPE)

Brain Hemorrhage [62] Learn about Age Group and Alcoholic Behavior Random Tree, Logistic Regression, Multilayer Perceptron, Sup-
port Vector, knearest neighbor algorithm Machines(SMO)

94% (age group) and 96% (alcoholic behavior)

attacker measured visual and mental processing of digits, eye and
hand movement while the victim was typing the PIN. In Virtual
ATM PIN Entry (VAPE), the attacker used a virtual ATM keyboard
to reduce the number of keys on the keyboard. The attacker mea-
sured the similar parameters as in VKPE in this attack. The lower
number of keys resulted in higher accuracy than VKPE. Physical
Numeric Keypad PIN Entry (PNKPE) attack measured the mental
processing along with the facial muscle, eye, hand, finger while
typing 4-digit PIN on a physical keyboard unlike virtual keyboard.
Unlike the previous two scenarios, the attacker used a numeric
physical keyboard to create digit specific pattern in event-related
potentials. Physical Keyboard Password Entry (PKPE) attack used a
6-character based passwords and measures facial muscle, eye, hand,
finger while the user is typing. In this experiment, the participants
were asked to enter a 6-character based passwords using a physical
keyboard, like a laptop keyboard. The success rate of randomly
guessing a digit of the PIN is 100/10 (10%) and the success rate of
randomly guessing a character is 100/26 (3.84%). PEEP increases
this accuracy of correctly identifying the digits of PIN to 47.5%
and passwords to 34.7%. In Table 3, we summarize the attacks and
the private data extracted from these attacks and in Appendix A,
we can see the visual representation of the attack scenario using
keyboard/keypad.

5.2 Previously Studied Active Attacks
Martinovic et al. [56] used ERPs as a vector of side-channel attack
to snoop into users private information. The authors showed im-
ages of numbers, banks, and ATMs to the participants when their
brain signals were measured. They used the brain signal to decrease

entropy of information related to PIN, banks, ATMs by 23-40%. In
this attack, the user was asked to memorize a 4-digit PIN at the
beginning of the experiment to calibrate successfully. To extract
bank information, the attacker showed a list of bank logos during
the training phase and during the experiment the attacker showed
list of credit cards related to the banks that were shown at the
beginning. Based on the neural pattern during the experiment and
the calibration phase, the attacker predicted the bank information
of the user. To extract the known location or home address of the
victim, the attacker designed a malicious app where the user was
presented with a list of location highlighted map. Based on which
location on the map triggered the neural pattern, the attacker could
guess the location of the user’s known or living place. Another
attack was designed by Frank et al in [29] to detect subliminal brain
activity. This subliminal attack was performed for less than 13.3
milliseconds in which the visual probing was tested. The classi-
fier of this attack can extract information from the recorded EEG
signal to identify brain activity related to a known face that the
user subliminally recognizes, an unknown face and a plain video
sequence without any subliminal stimulation. A study conducted in
[62] revealed user’s age group and alcoholic behavior and success
rate of the classifier is approximately 94% and 96% respectively,
due to higher end BCI datasets. The Hemorrhage attack was de-
signed using machine learning techniques to identify victims’ age
group and alcoholic behavior while the victim is watching videos
or viewing images. Due to the higher-end medical grade BCI de-
vice, this attack reached higher accuracy from machine learning
classifiers. Appendix B represents the stimuli used in the attacks
and the success rate of different attacks.
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Table 4: List of works that Extracted Private Data from Brainwave for Benign Purpose, Feature Extraction Methods, Machine
Learning Classifiers Used to Extract Information, Extracted Information from Brainwave Signal and Accuracy of Classifiers

Literatures Feature Extraction ML Classification Extracted Information Accuracy
Liu et al. [20, 52] Band-Pass Filtering Fractal Dimension (FD) Emotion: sad, frustrated, fear, satisfied,

pleasant and happy
84.9%

Liu et al. [49] ResNets, LFCC KNN, SVM, LR, RF, NB, DT and FC Emotion: anger, joy, sadness and plea-
sure

KNN: 89.72%

Zheng et al. [82] DE, DASM, RASM DBN, SVM, LR and KNN Emotion: positive, neutral and negative DBN: 86.08%, SVM: 83.99%, LR: 82.70%,
KNN: 72.60%

Correia et al. [25] Temporal-windows, Time-frequency,
MVPA

linear-SVM Spoken word detection in bilingual 98.3%

Soman et al. [75] Short-Time Fourier Transform (STFT) SVM, LDA, Gaussian Language discrimination: English vs
Japanese and Hindi vs Japanese

E-J-SVM:64.06, LDA:62.79, Gauss-
ian:58.64; H-J-SVM: 62.57%, LDA:
52.18%, Gaussian: 65.09%

Krishna et al. [40] Connectionist Temporal Classification
(CTC), Attention based RNN, RNN
transducer model

GAN, WGAN, LSTM Regression Word and Character Recognition RNN-T(WER): 92.98 %, 69.89 %, 70.37 %,
92.66 %, CTC(WER): 73.6%, 83.8 %, 91.1%,
91.5 %

Liu et al. [50] FFT, PSD SVM Recognize Attention Level 90.64%
Wang et al. [80] FDA, Statistical Features SVM with gradient descent Decoding English Alphabet Letters 46.61%
Herff et al. [30] Elliptic IIR low-pass and high-pass fil-

ters
Text Identification >50%

Dan et al. [63] FFT SVM Emotion: negative and positive 87.53%
Zheng et al. [26, 31, 78, 83] PSD, DE, DASM, RASM, ASM, DCAU KNN, LR, SVM, GELM Emotion: negative, positive and neutral KNN: 70.43%, LR: 84.08%, SVM: 78.21%,

GELM: 91.07%
Li et al. [44] CSP linear-SVM Happiness and Sadness 93.5%
Murugappan et al. [60] Wavelet transform KNN and LDA Emotion: disgust, happy, surprise, fear

and neutral
KNN: 77.68% LDA: 73.5%

Wang et al. [79] Wavelet transform, PCA, LDA, CFS linear-SVM Negative and Positive Impression 87.53%
Petrantonakis et al. [61, 64,
76]

Statistical values, wavelet transform
and HOC

QDA, KNN, MD and SVMs Happiness, surprise, anger, fear, disgust
and sadness

QDA: 62.3%, SVM: 83.33%, MD: 44.90%,
KNN: 34.60%

Duan et al. [27] DE, DASM, RASM and ES linear-SVM and kNN Negative and Positive Emotion SVM: 74.10%, KNN: 69.24%
Pfurtscheller et al. [65] DSLVQ KNN Left or Right Hand Movement 80%
Liu et al. [51] Statistical Features SVM Left or Right Hand Movement 89.17%
Vanitha et al. [77] Hilbert Huang Transform (HHT) SVM, LDA, QDA, KNN Stress Level Detection SVM: 89.07%, LDA: 70.17%, QDA:

76.83%, KNN: 72.67%
Saeed et al. [71] Power Spectral Densities KNN, NB, SVM, LR, MLP Long-Term Stress Detection SVM, LR: 85.20%
Purnamasari et al. [67] FFT KNN Stress and Meditation Level 80%
Jebelli et al. [33] TDA, FDA SVM Stress Recognition 80.32%
Ji et al. [34] EEG Bands Deep Learning Stress Index 90.96%
Amin et al. [18] Wavelet Analysis, FDR, PCA KNN, SVM, MLP, NB Pattern Recognition KNN: 93.33%
Liang et al. [47] Burg AR model, Linear discriminant

analysis
KNN, SVM, NMF, PCA, ANN Identity Recognition 98.12%

Bird et al. [19] FFT, Statistical Features Naive Bayes, Bayes Net, J48, Random
Tree, Random Forest, MLP, SVM

Mental State Recognition Bayes Net: 73.67%, J48: 80.65%, Random
Tree: 76.21%, Random Forest: 87.16%,
MLP: 80.85%, SVM: 75.24%

Makin et al. [54] Temporal Convolutional Filters RNN with LSTM Cortical Activity to Text Word Error Rate <3%

5.3 Studied Works to Extract Private
Information from Neural Pattern

There are many studies conducted to extract private information
from human brain, such as emotional state of mind, classify stress
level, hand movement, identity recognition, pattern recognition etc.
In this section, we discuss about major studies conducted to extract
data from neural pattern and analyzed data with different classifi-
cation methods to reach higher accuracy rates. Table 4 shows the
briefs of the studied works, features extraction methods, machine
learning classifiers to classify pattern of task and accuracy of clas-
sifier in identifying patterns from neural signals. From this section
we learn what type of information can be learnt in certain accuracy,
which can lead to privacy threat if the brainwave is accessible by
malicious user.

Liu et al. explored EEG-based motor imagery in [51] which is
very useful in brain-computer interface. Electroencephalography
(EEG) microstates reflect the spatial configuration of quasi-stable
electrical potential topographies. Different microstates represent
different brain functions. In this paper, microstate method was
used to process the EEG-based motor imagery to obtain microstate.
The single-trial EEG microstate sequences differences between two

motor imagery tasks – imagination of left and right handmovement
were investigated.

Liao et al. conducted a study to decode individual finger move-
ments from one hand from EEG signal [48]. The support vector
machine (SVM) classifier’s accuracy in detecting finger movements
based on movement-related spectral changes as features is 77.11%
in average over all subjects in the experiment. Using the same clas-
sifier, they found 91.28% accuracy in three epilepsy patients using
ECoG data. The authors claimed, the accuracy obtained from the
classifier for EEG, ECoG are significantly higher than empirical
guessing level (51.26%).

A survey by Li et al. listed different research efforts to classifies
human emotion (Fear, Anger, Sadness, Joy, Surprise, Disgust) using
various classifiers. Li et al. used linear support vector machines
(LINEAR-SVM) to extract emotion from data of 62-channels with
accuracy of 93.5% [44]. A study by Murugappan et al. using 64-
channels EEG data, showed that KNN classifier has 79% accuracy
in extracting emotional state [60]. Wang et al. used 62 channel
brainwave data to classify emotional state. SVM with linear nuclei
showed accuracy of 87.53% [79]. Method by Petrantonakis et al [64]
showed that best classifier (SVM) obtained 83.33% success rate in
average. Duan et al found 74% accuracy from SVM classifier and
found that MRMR algorithm can effectively improve the accuracy
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of classifier [27]. Other research efforts to classify emotional state
is listed in Table 4.

EEG allows studying non-invasively with high temporal resolu-
tion neural dynamics of speech processing. The temporal dynamics
of EEG signals are informative of temporal order effects during
speech processing. The study of Correia et al [75] demonstrated the
feasibility of MVPA to decode individual spoken words from EEG
responses and to assess the spectro-temporal dynamics of their
language invariant semantic-conceptual representations.

Zhang et al. [46] conducted a study to show the progress of brain
science to identify emotion classification. In this study, different
machine learning classifications were used to identify and classify
state of consciousness in human brain in terms of frequency bands
and psychological states.

There are studies that have suggested that it is feasible to recog-
nize isolated aspects of speech from neural signals, such as auditory
features, phones or one of a few isolated words. Herff et al. [30] con-
ducted a study where continuously spoken speech can be decoded
into the expressed words from intracranial electrocorticographic
recordings. Specifically, they implemented a system, called Brain-
To-Text which models single phones, employs techniques from
automatic speech recognition (ASR), and thereby transforms brain
activity while speaking into the corresponding textual represen-
tation. The result demonstrate that the system can achieve word
error rates as low as 25% and phone error rates below 50%. Addition-
ally, this approach contributes to the current understanding of the
neural basis of continuous speech production by identifying those
cortical regions that hold substantial information about individual
phones.

Work by Vanitha et al. [77] demonstrated real time stress detec-
tion is possible using the EEG signal. To determine the stress level,
they used several stimuli from different categories, such as Inter-
personal stimuli: quarrel with friends and parents, split up with
partner, crisis in family, conflict with room mate; Intrapersonal
stimuli: public speech, financial constraints, personal health issues;
Academic Workload: meeting deadlines, poor performance, inad-
equate resources, fear of failure, poor time management, Unclear
contents, competition with peers. Based on the different categori-
cal stimuli, the work showed that accuracy rate of SVM is 89.07%,
accuracy rate of LDA is 70.17%, QDA is 76.83% and KNN is 72.67%
and concluded that SVM found higher accuracy than other ML
classifiers.

Makin et al. [54] showed how to decode brain signal to extract
speech with higher accuracy using the electrocorticogram. In this
study, they trained a recurrent neural network to encode each

High 
Extraction

High 

‘This’
‘was’
‘easy’
‘for’
‘us’
‘EOS’

Temporal
Convolution

Feature Sequences

Neural Network

Encoder RNN Decoder RNN

Final hidden state

Predicted MFCCs

Predicted text

Figure 4: Overview of the Speech Encoder-Decoder from
Electrocorticogram [54].

sentence-length sequence of neural activity into an abstract rep-
resentation, and afterwards, decoded this representation, word by
word and turn into an English sentence. For this experiment, each
participant’s data consists of spoken repeated 30-50 sentences, while
the brain activity was recorded using 250 electrodes distributed
over peri-Sylvian cortices. For data analysis, high-Gamma signal
was extracted at 200Hz and clipped to spoken sentence length to
supply the signal to an artificial neural network. Figure 4 represents
the higher level overview of the study. The green window on the
high-gamma EEG signal in purple is a single sample of a feature
sequence. Each filter maps data from 12 sample wide window from
all electrode to a single samples of feature, afterwards slides by
12 sample to generate next feature sequence, and process goes on
until 100 feature sequences are generated. Afterwards, the input
feature sequences are passed to the RNN encoder as demonstrated
in Figure 4, which learns to summarize in a single hidden state.
Hidden state of final encoder then initiated decoder RNN, which
learns to predict the next word. This encoder-decoder has lower
error (less than 3%).

There are more works listed in Table 4 which could extract
pattern to recognize sensitive/private information from human
brainwave. From the table, we find, different feature extraction
algorithms and machine learning classifiers were used to recognize
pattern from brainwave.

6 OTHER LIKELY ATTACKS
In this section, we synthesize existing studies conducted to extract
information from the human brain for benign purpose in different
sectors and how accurately machine learning classifiers performed
to extract information. Table 5 summarizes the discussion about
likely privacy threats in different sectors. We also discuss about the
possible privacy threats can be launched by attacker in similar situ-
ation. Table 6 represents practicality of attack scenarios in different
sectors on BCI implementation and potentiality of the attacks.

6.1 Privacy Threat of Neuro-Medical
Information

Since BCI has enabled people to communicate with the computer
using neural sensor without users’ intervention, it is widely used in
medical area to help patients, especially with neurological disorders.
A system proposed by Sharanreddy et al. [74] could recognize EEG
abnormalities to detect brain tumors and epilepsy seizures. The
applications developed within this field range from the control of
prosthetic limbs and wheelchairs to the use in brain stimulation
procedures [43]. Neurofeedback has been used for various treat-
ments [57] like attention-deficit hyperactivity disorder (ADHD)
[53]. Neurofeedback involves EEG activity recording and providing
feedback with presence of a predetermined EEG features [58]. Mac-
Farland et al. mentioned, Parkinson’s disease and motor imaginary
can be identified from BCI devices [57].

If the medical system get compromised, attackers can use brain-
wave data for malicious purpose. In such environment, the attacker
can hack the server or can eavesdrop to transmitted channel to
collect data and then decompose the raw signal to get private in-
formation about patients. To launch such attack, the attacker does
not need to be physically present in the proximity of the victim.
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Table 5: Privacy Implications of Benign BCI Applications Being Used in Different Sectors (Neuro-Medical, Silent Speech De-
tection, Speech Recognition, Neural Authentication, Gaming & Entertainment)

BCI Enabled Applica-
tions

Applications’ Jobs Techniques Used Privacy Threat

Neuro-medical use − Detection of brain tumor, Seizure disorder, Sleep
disorder and brain swelling [16]
− Control of prosthetic limbs and wheelchairs [45]
− Identify Parkinson’s disease and motor imaginary
[57]

− Modified Wavelet-Independent Component Analysis
(MwICA), Multi-Layer Feed Forward(MLFF) Neural net-
work known as Back Propagation Network (BPN)

− Compromised system can leak patient private data
to the malicious party.

Silent Speech andAu-
ditory BCI

− Recognize unspoken speech with two words Yes
and No [72]
− Reconstruct silent speech through investigation of
neuromuscular signals from facial and neck area [36]
− Reproduce imagined speech and mouthed non-
audible speech [70]
− Identify the behavioral performance [55].

− Four classifiers (Support Vector Machine, Discriminant
Analysis, Self-Organizing Map and Feed Forward Back-
propagation) and Ensemble Network
−Mel-frequency cepstral coefficient based representations,
Discrete Cosine Transform
− Mel Frequency Cepstral Coefficients (MFCCs), log vari-
ance Auto Regressive (AR) coefficients, Support Vector Ma-
chine (SVM), HiddenMarkovModels (HMM) and k-nn clas-
sifier
− Alpha and theta spectral power density curves

−Unspoken PIN, Password, Bank Information can be
revealed from neuromuscular signal.

Speech Recognition − Recognition of the first five words from the inter-
national table of the phonetic alphabet [66]

− Hidden Markov Model, Double-Tree Complex Wavelet
Transform, Linear Discriminant Analysis

− Stolen neural pattern can be exploited to formulate
attack to systems that requires speech verification us-
ing brainwaves.

Neural Authentica-
tion and Identifica-
tion

− Identifying neural pattern and neural passwords
for authentication and user identify and tracking pur-
poses [35]

− Cosine Similarity Metric
− Bilinear Transform

− Attacker can authenticate the system using the
stolen neural signals which required neural authenti-
cation and can get private information from the sys-
tem.
− Attacker can identify person by neural patterns
and can track him for malicious purpose.

Gaming and Enter-
tainment

− Detection of amplitude peak in the EEG signal af-
ter showing stimuli (videos, pictures, alphanumeric
characters etc.) on the gaming screen [59]

−Boosting algorithm for logistic regression, BCI2000 P300
classifier known as stepwise linear discriminant analysis
(SWLDA)
− Neural Networks: Multilayer Perceptron
− Fisher’s Linear Discriminant Analysis (FLDA) and Prin-
cipal Component Analysis (PCA)
− Linear Discriminant Analysis

− BCI games could be exploited to extract individ-
uals’ private information, such as 4-digit PINs, bank
information, date of birth and location using EEG sig-
nals.
− Attackers display specific videos, images or num-
bers and read their corresponding EEG signals to ex-
tract sensitive information.

6.2 Privacy Threat of Silent Speech and Speech
Recognition Information

AlterEgo, a wearable interface that allows a user to silently converse
with a computing device without any voice or any discernible move-
ments can compromise users’ privacy by neuromuscular signals in
internal speech articulators [36]. This interface showed accuracy
of digit recognition is 92% which may lead to privacy leakage when
someone recalls PINs and passwords.

Salama, et al. showed detection of words "YES" and "NO" through
the analyzing EEG signals. The work was evaluated on seven in-
dependent subjects and the EEG signal was measured by a single
electrode located on the forehead of each subject. The results re-
ported 57% success from online tests and 56% success from offline,
post-analysis. [72].

A work conducted by Wester et al. tried to recognize first five
words from international table of the phonetic alphabet. A specially
designed EEG head cap with sixteen electrodes was used to measure
brain signals from 21 individual subjects. The theory of this work
was each individual brain has a specific pattern saved for each
specific word and the pattern is recalled when a word is pronounced
or thought about. With the proposed theory this work reported ML
classifier’s success rate of 45.5% [66].

In auditory brain-computer interface like [55] have been con-
ducting researches to identify behavioral performance of patients
with locked-in-state if they can recognize the sound direction to
communicate with the world.

All these works demonstrated higher accuracy in learning un-
told/silent voice. If a malicious application use EEG responses or

listen to EEG signal silently from a compromised system, then it
can infer private sensitive information like PIN, password, bank
account information.

6.3 Privacy Threat of User Identification and
Tracking

Based on the neural pattern, each individual is unique and there-
fore, neural signals can be used for biometrics verification. Thus,
many researchers have analyzed and recognized the potentiality of
neural pattern for authentication and identification. Chuang et al.
conducted a work to authenticate users based on brainwave signals
[24]. In particular, they used single-channel EEG signals to record
brainwave when a subject performed a custom task (e.g., singing,
breathing or finger movement). Brainwaves were wirelessly trans-
mitted to a computer application which collected and processed
neural data. Their authentication system analysed similarity be-
tween brain data and training data to authenticate subjects. Their
proposed authentication mechanism showed the same accuracy as
multi-channel EEG authentication which was about 99% accurate.
Rajagopal et al. used EEG signal to extract features as neural pass-
words for authentication [68]. The entire process was performed
automatically without human supervision. They used an algorithm
which automatically could extract neural events corresponding to
individual’s blinking, jaw-clenching, and eye-rolling activities. The
results showed accuracy from 67% to 95% with single-trial inputs.

A compromised system can expose neural signature to adversary.
Using the neural signature, attacker can impersonate thoughts of
victim and use it for malicious purposes, e.g., system verification.
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6.4 Privacy Threat of Gaming and
Entertainment Applications

There are several brain-games available in gaming industry which
are developed based on consumer-grade EEG devices. The princi-
ple of most BCI enabled games is similar to P300-speller. In such
gaming, an amplitude peak in EEG signal is detected and based on
that the user can interact with the gaming environment. In P300-
speller, stimuli is alphanumeric character which is shown on the
screen. These characters are arranged in a matrix which flashes
on a screen rapidly. Users choose one character from spelled word
from screen using eyes. By analyzing peaks in brain while looking
at the character on screen, spelled word get identifies [59].

Kim et al. [37] measured a subject’s attention and meditation
level through EEG signals when a subject was playing a game. They
compared the difference among all subjects’ EEG signals, according
to subjects’ age and gender. Their results show that, in POKOPANG
game, average attention level of men is lower than women, while
meditation level is reversed. The concluded that women were more
interested in the POKOPANG game thanman. If attacker gets access
to such system, he could easily classify gender of victim, and later
could use this information for targeted advertisements.

Unrestricted BCI API access gave everyone capabilities to de-
velop BCI-enabled games. A malicious party can have control over
stimuli presented to users and as a consequence, attacker can learn
about neural response of user and design some images, videos etc.
as malicious stimuli to maximize leaked information.

7 EFFORTS ON BRAINWAVE PRIVACY
ENHANCEMENT

From the studied literatures, we learnt that EEG signals obtained
from consumer-grade BCI, can be used to extract private infor-
mation, which can lead to serious privacy attacks. Private data
extracted from brainwaves can be exploited by malicious actor to
infer users’ thought, memory, emotional states etc. For example,
someone’s memory and emotional responses might be useful for
law enforcement works, criminal investigation and leaking such
information will lead to devastating situation. To prevent such pri-
vacy threats, we discuss about studied efforts to enhance brainwave
privacy.

7.1 Brain-Computer Interface Anonymizer
Chizeck et al. [23] introduced Brain-Computer Interface Anonymizer
which can generate anonymized neural signals by filtering features
to remove privacy sensitive information. It consists of two main
components: the first one identifies component of recorded neural
signals which is used to extract private information and quantifies
the amount of information can be exposed. The second component
is an analysis and validation tool which analyzes and validates
the obtained information from the first component to enhance the
privacy and security of BCI. Figure 5 represents the workflow of
the system.

BCI Anonymizer can process brain signal components required
by the application, rather than providing the whole signal packets.
This implementation, resists the eavesdroppers to steal or decom-
pose sensitive information from brain. From Section 4, we learnt
about two types of attackers. BCI Anonymizer can prevent both

Figure 5: Brain-Computer Interface Anonymizer

types of attack scenarios by pre-processing the brain signal before
it is being used or being stored in a server/database.

7.2 Privacy-Preserving Cryptographic
Protocols

Agarwal et al. proposed cryptographic protocols [17] based on
Secure Multiparty Computation (SMC) to perform linear regression
over EEG signals from many users in a fully privacy-preserving
(PP) fashion, i.e. such that each individual’s EEG signals are not
revealed to anyone else.

In this work, two different scenarios were considered: in the first
scenario, a set of source drivers work together to train a Linear
Regression (LR) model in a distributed fashion (many-party SMC).
Throughout this process, none of the drivers can see the data from
the other drivers in an unencrypted way at any point. At the end
of the protocol, all source drivers hold encrypted shares of the
trained model, and a target driver can obtain a prediction for his
data by engaging in a cryptographic protocol with all of the source
drivers (many-party SMC). In the second scenario, the target driver
has calibration data that can be leveraged to train a personalized
and more accurate model. The target driver engages in a separate
cryptographic protocol with each of the source drivers (2-party
SMC) to train LR models, namely as many models as there are
source drivers. Each model is trained on data from one source driver,
as well as on some of the calibration data from the target driver. As
before, any individual’s EEG data is not disclosed to anyone else.
This framework allows to estimate the drowsiness of drivers as
would be possible in the unencrypted case, and scales well with the
number of drivers. It is the first application of commodity-based
SMC to EEG data, as well as the largest documented experiment of
secret sharing based SMC in general, with 15 players involved in
all the computations. To do that, they presented a solution for PP
training and inference with LR models in two different scenarios
that are very relevant in practice, and both involve source parties
and a target party.

The runtime results of this work for predicting driver drowsiness
show that LR protocols and their implementation scale very nicely
with an increasing number of drivers involved in the computations,
and that the privately trained LR models are as accurate as those
trained in the clear, i.e. without any encryption. This work shows
that additive secret sharing based SMC is a viable mechanism for
protecting the privacy of users in future brain-computer interface
applications.
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Table 6: Evaluation Summary of Possible Attack Scenarios, Attacker Type, Attacker Intuition and Potentiality and Practicality
of Attacks of Currently Deployed EEG Application in Different Sectors

BCI Sectors Private Information Possible Attack Scenario Attacker Type Attacker Intuition Potentiality
of Attack

Neuro-Medical BCIUse
[16, 43, 45, 53, 57, 58]

Patients’ Neural Information,
Pre-Processed Brain Data Server Attack Insider, Outsider Learn Private Sensitive Information of Patients

and use it for Advertisement purposes. Medium

Silent Speech and Audi-
tory BCI [36]

Processed Auditory/Hidden speech,
Raw Brainwave Signal

Server Attack, Active/Passive
Eavesdropping Malicious Third-Party

App
Learn Untold PIN, Password, Bank Information High

Speech Recognition
[66]

Processed/Recognized Speech,
Raw Speech Data Collected From Brain Server Attack, Passive

Eavesdropping
Malicious Third-Party
App

Use Stolen Speech Pattern for Critical System Veri-
fication

Medium

Neural Authentication
and Identification [24,
68]

Neural Identity from Brainwave Signal Active/Passive Eavesdrop-
ping

Malicious Third-Party
App

Use Stolen Neural Signature for System Verification,
Use Neural Pattern for Future Malicious Attacks High

Gaming and Entertain-
ment [37, 42, 59]

Keystroke Detection from Brainwave,
Crack Silent Code from Brainwave Active/Passive Eavesdrop-

ping
Malicious Third-Party
App

Use Neural Pattern to Identify ATM PIN, Bank In-
formation etc.

High

8 CONCLUSION & FUTURE RESEARCH
DIRECTIONS

Literature surveyed and systematized in this paper, demonstrate
that human brain can passively and actively expose sensitive private
information. While a user is using a consumer-grade BCI device,
being unaware of active or passive malicious activity running in
background, serious privacy threats can be initiated by malicious
parties, such as exposing private data like demographic informa-
tion, identity of users, mental condition, emotional state, speech
detection, person’s interest. Later this compromised data can be
used for targeted advertising on website or social networking or to
run side channel attack to get bank or credit card information.

In this paper, we surveyed three active attacks [29, 56, 62] and
one passive attack [81] which plays a preliminaries role to demon-
strate the privacy risk of current BCI uses. All these attacks have
potential success rate is presented in Table 3. Later we systematized
papers which extracted private information from brainwave using
different machine learning classifiers with potential accuracy which
can play a role as ground truth to launch successful attacks. Table
4 demonstrates works that could potentially identify the emotional
state [20, 49, 52, 63, 82], attention level [50], spoken word [25],
language [75], decode English alphabets [80], left or right hand
movement [51, 65], stress level [33, 34, 67], identity recognition
[47] etc. At last, in Section 6, we presented BCI implementation
in different sectors and the future privacy implication through a
compromised system that can cause harm to the end users. Table
6 demonstrates the possible attack scenarios in daily-life BCI im-
plementation in a compromised system and the potentiality of the
attacks.

Researchers attempted to demonstrate some defensemechanisms
discussed in Section 7. Brain-Computer Interface Anonymizer [23]
by Chizeck et al. can generate anonymous brain-signal by eliminat-
ing private sensitive information, while Privacy-Preserving Cryp-
tographic Protocols [17] by Agarwal et al. offers a fully privacy-
preserving (PP) fashion which does not reveal signal to anyone
else.

From the surveyed attack literature, neural papers with higher
success rate of ML classifiers in detecting private information and
defense mechanisms, we present the requirement of additional
security layer in consumer-grade BCI implementation. In future,
more privacy-preserving techniques need to be introduced, such

as, to prevent attacks from outside attackers, manufacturers can
include device license key which will allow the device to inter-
act with the specific computing system. Inside attackers, such as,
malicious third-party mobile application will not have the license
key, thus will not be able to receive the brainwave signals which
prevents them to exploit our brainwaves. This paper gives proper
direction to security researchers to consider the privacy risks be-
fore consumer-grade EEG headsets get accessible to end users like
smartwatch/smartphone.

The systematized presentation in this survey gives a clear re-
search direction to enhance privacy in the deployment of BCI de-
vices. While the human brain and AI will make future technology
more promising, but it can lead to serious harm to the human being.
Thus, to protect people from such threats, while welcoming the ad-
vanced future technology, more research effort is required to learn
how much private data is possible to extract from different types
of BCI devices, and how the uses of private data can be limited by
adding an extra layer of filtering. Therefore, further research efforts
in designing powerful attacks with higher accuracy are required to
build potential defense mechanisms to counteract future privacy
attacks.
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APPENDIX
A STUDIED PASSIVE ATTACK

Attacker’s Classifier

43%

33%

46%

35%

Virtual Keyboard Virtual ATM 

Physical Numeric 
Keypad 

Physical Keyboard 

VKPE PIN

VAPE PIN

VNKEP PIN

PKPE 
PASSWORD

User’s Activity
Instance Based Learning 

(IB1)

KStar

IB1 with Naive Bayes

KStar and NB algorithm

10-fold cross validation

Success Rate

B STUDIED ACTIVE ATTACKS

4-digit PIN

Success Rate

0 1 2 3 4 5 6 7 8 9

20%

30%

30%

21%

94%

96%

Martinovic et al.

Frank et al

Guessing Location

Neupane et al.

At
ta

ck
er

s’
 in

tu
iti

on
s

Attack Scenarios

Shows different credit cards

Shows 0-9 multiple times

Shows highlighted map

Subliminal attack

Age group detection Alcoholism detection

< 13.3 milliseconds

Shows known 
and unknown 
faces

Uses image captcha to run attack

Session 5: Wearable and Cellular Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

187


	Abstract
	1 Introduction
	2 Background
	2.1 Consumer-Grade Brain Computer Interface
	2.2 Functionalities of Different Regions of Human Brain
	2.3 Components of BCI System

	3 Instances of Current BCI Devices
	3.1 EEG devices in Commercial Use:
	3.2 EEG devices on Research Lab:

	4 Methods of Extracting Private Info from a Compromised BCI System
	5 Systematization and Evaluation of BCI Attacks
	5.1 Previously Studied Passive Attacks
	5.2 Previously Studied Active Attacks
	5.3 Studied Works to Extract Private Information from Neural Pattern

	6 Other Likely Attacks
	6.1 Privacy Threat of Neuro-Medical Information
	6.2 Privacy Threat of Silent Speech and Speech Recognition Information
	6.3 Privacy Threat of User Identification and Tracking
	6.4 Privacy Threat of Gaming and Entertainment Applications

	7 Efforts on Brainwave Privacy Enhancement
	7.1 Brain-Computer Interface Anonymizer
	7.2 Privacy-Preserving Cryptographic Protocols

	8 Conclusion & Future Research Directions
	References
	A Studied Passive Attack
	B Studied Active Attacks



