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ABSTRACT

The growing adoption of voice-enabled devices (e.g., smart speak-

ers), particularly in smart home environments, has introducedmany

security vulnerabilities that pose significant threats to users’ pri-

vacy and safety. When multiple devices are connected to a voice

assistant, an attacker can cause serious damage if they can gain

control of these devices. We ask where and how can an attacker

issue clean voice commands stealthily across a physical barrier, and

perform the first academic measurement study of this nature on

the command injection attack. We present the BarrierBypass attack

that can be launched against three different barrier-based scenarios

termed across-door, across-window, and across-wall. We conduct a

broad set of experiments to observe the command injection attack

success rates for multiple speaker samples (TTS and live human

recorded) at different command audio volumes (65, 75, 85 dB), and

smart speaker locations (0.1-4.0m from barrier).

Against Amazon Echo Dot 2, BarrierBypass is able to achieve

100% wake word and command injection success for the across-wall

and across-window attacks, and for the across-door attack (up to

2 meters). At 4 meters for the across-door attack, BarrierBypass

can achieve 90% and 80% injection accuracy for the wake word and

command, respectively. Against Google Home mini BarrierBypass

is able to achieve 100% wake word injection accuracy for all attack

scenarios. For command injection BarrierBypass can achieve 100%

accuracy for all the three barrier settings (up to 2 meters). For

the across-door attack at 4 meters, BarrierBypass can achieve 80%

command injection accuracy. Further, our demonstration using

drones yielded high command injection success, up to 100%. Overall,

our results demonstrate the potentially devastating nature of this

vulnerability to control a user’s device from outside of the device’s

physical space, and its limitations, without the need for complex

and error-prone command injection.
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1 INTRODUCTION

As voice assistant (VA) devices such as Amazon Echo and Google

Home smart speakers are approaching ubiquity, we are forced to

become more aware of the inherent security risks associated with

these devices. VA devices typically act as a central hub of control

for a multitude of connected smart devices such as smart locks,

lights, cameras, thermostats, appliances, and garage doors. Each

of these devices can be controlled in some way by issuing voice

commands to the VA device. But these commands also introduce

new types of risks. The ability to control such devices with vocal

commands opens up a lot of attack possibilities that did not exist

before. Among the different types of attacks that can be performed,

the potential for home/office/hotel/dorm intrusion is one of the

most severe and threatening.

Media coverage on this subject reveals the growing concern for

the security vulnerabilities in a smart home environment [13, 24, 25,

29, 30]. While much of the concern is centered around the vulnera-

bility to hacking that comes with connecting a multitude of devices,

many professionals agree, for the purposes of home intrusion, there

is a very low chance that an attacker would attempt to perform

complex hacking as opposed to simply brute forcing there way

in [14]. However, the ability to issue simple vocal commands to a

voice assistant in order to control a lock or door is one vulnerabil-

ity that requires no hacking and could potentially be favored by

attackers who want to gain access to a space.

Aside from commands being accidentally issued through tele-

vision advertisements [9, 26, 35], in an ISTR special report from

Symantec, the author discusses the "mischievous man next door at-

tack" which involves a neighbor issuing voice assistant commands

203

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558482.3581772&domain=pdf&date_stamp=2023-06-28


WiSec ’23, May 29–June 1, 2023, Guildford, United Kingdom. Payton Walker, Tianfang Zhang, Cong Shi, Nitesh Saxena, & Yingying Chen

either with ultrasonic frequencies, or by waiting until you leave

and simply shouting a command through the door [34]. The report

touches on the significant security risk that is introduced if you

have smart locks or a garage door that can be controlled by your

voice assistant because it would allow an attacker to gain entry

into your home. While home invasion is a serious concern when a

command injection attack is possible, it is important to note that

there are many other scenarios that can cause harm if an attacker

can control the smart devices of a home. For example, turning on

the stove can cause a gas leak or become a fire hazard.

Another form of command injection attack that has emerged in

academia in recent years is hidden voice commands that obfuscate

command audio so it is unrecognizable to humans, but recognizable

by VA devices. However, hidden voice command attacks have lim-

ited applicability and their accuracy is generally low. They are also

very sensitive to noise because of how specially they are crafted to

begin with. Also, even after the past several years of research on

these attacks [8], the vendors have not really come up with defenses

to such attacks. This is perhaps because the vendors are likely ig-

noring them as being rather impractical or uneventful. Indeed, the

recent work by Abdullah et al. [8] revealed that many of the hidden

voice command attacks presented in research are not truly feasible

in real-world settings due to their low accuracy and lack of trans-

ferability to different systems. Another recent work on command

injection by Sugawara et al. [31] introduces the LightCommands

attack which uses laser-based injection of the audio signal. The

main drawbacks to this attack are that it requires a line of sight, is

very complicated to setup/launch, and can be error prone.

In this paper, we aim to address most of the aforementioned prob-

lems with the existing voice command injection attacks from the

literature or practice. We focus on an attack model, BarrierBypass,

in which a loudspeaker issues clean vocal commands — through

a physical barrier — to a voice assistant or other voice control-

lable technology that is located inside a home, office, or hotel room.

While this attack model eliminates many of the complications of

hidden command injection, it does introduce its own limitations.

For example, because this attack injects clean commands and re-

quires louder volumes, the attack would likely only be launched in

certain scenarios such as when the user is not present in the space

(such as during work hours). We consider three different barrier

types which serve as the entry points for the attacker to inject such

out-of-sight voice commands:

(1) Window Barrier: The attacker injects a command through

a window to target a voice assistant in the room. The attacker

can launch this attack in-person or remotely-controlled via drone

technology which can target multiple homes in a neighborhood or

even high rise buildings with condos or offices. We demonstrate

the feasibility of both attack scenarios in this work.

(2) Door Barrier: The attacker injects a command through a

door that connects to the space with the victim voice assistant. This

barrier is likely most susceptible due to the thin gap beneath the

door above the flooring which is sufficient for the sound waves to

pass into the space easily.

(3) Wall Barrier: The attacker is located in an adjacent space

and injects a command through an interior wall. This barrier is

applicable to housing setups such as dorms, hotels, or apartments

where adjacent units share a wall.

Is issuing voice assistant commands across a physical barrier possi-

ble? What types of barriers can be attacked? How can such an attack

be achieved and what particular settings are required in order to by-

pass the barrier? What are the limitations of this attack? These are

the main research questions that we consider during this work and

seek to answer. We perform extensive experimentation to evaluate

the BarrierBypass attack in different parameter settings such as

command audio loudness and location of the voice assistant device

to determine when this type of command injection attack is possible

in a real-world scenario. To our knowledge, a broad study on the

voice assistant command injection attack, across physical barriers,

has yet to be conducted in academia. This work demonstrates when

the BarrierBypass attack is practical and it can be used to inform

future research directions on the subject.

Main Contributions and Results: We summarize our key contri-

butions and results below:

(1). Design of Clean Voice Barrier-based Attacks: We designed

three different barrier-based command injection attacks to repre-

sent common materials/objects that may act as a physical barrier

between an attacker and the victim’s voice assistant during a com-

mand injection attack. Specifically, we define the BarrierBypass

attack in the across-door, across-window, and across-wall scenarios

and assess the effect of each barrier type on the attack’s success.

We present an attack that circumvents the sophistication and com-

plexity of hidden voice command or laser-based command attacks,

achieving the same goal with high accuracy in certain scenarios.

(2). Measurement Study Evaluating the Effect of Multiple Pa-

rameters: We present a measurement study and conduct an array

of experiments to evaluate the effect of different barriers, under dif-

ferent attack settings, on command injection attack success. We test

different speakers, loudness levels, voice assistant models (Amazon

Echo Dot 2 and Google Home mini), device distances from the bar-

riers, and observe the effect of different across-wall constructions

(with and without insulation). BarrierBypass is able to achieve 100%

injection accuracy for both the wake word and command under

certain conditions and selecting the highest performing speaker.

(3). Demonstration of Drone-based Attack:We utilized two drone

models equipped with Bluetooth speakers to demonstrate the po-

tential for executing the BarrierBypass attack via drones. Our ex-

perimental simulations of the attack reveal high command injection

success when using a drone that has a low operating loudness, or

when the command audio is increased by 10 dB to compensate for

a higher operating loudness.

(4). Informed Suggestions to Increase Attack Robustness and

Defense Potential: Compiling the knowledge gained from our

multiple experiments and attack demonstrations, we devise a set of

suggestions that could be applied by an attacker in order to improve

the potential for this attack under realistic conditions. Conversely,

this information can be used to inform defensive mechanisms.

2 BACKGROUND

2.1 Sound Passage Through Barriers

As sound waves hit a physical barrier, they will lose energy and

attenuate as they pass through the solid material. This occurs be-

cause the sound is either reflected off of the material (causing echo)

or absorbed by it. Therefore, sounds on one side of a barrier played
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at a particular loudness (decibel) level, will be quieter when heard

or recorded on the other side because the decibels are reduced.

The transmission loss of sound across a barrier can be affected by

many factors attributed to the barrier’s material and construction.

Thickness, density, and air space within the barrier are all factors

that can either increase or decrease the level of sound transmission.

For example, in double paned windows, thicker glass and greater

air space in the middle are desired to optimize sound blockage [2].

A barrier’s ability to block sound is measured using different rating

values such as Sound Transmission Class (STC) and Noise Reduc-

tion Coefficient (NRC). We provide further detail on these values

and what they represent in the following subsections.

2.2 Rating Values for Sound Propagation

Sound Transmission Class: Sound Transmission Class (STC) is

an established rating system for how much sound is blocked by a

particular assembly [3]. It is an integer rating that roughly equates

to the dB reduction in sound across a particular barrier. For example,

a wall that reduces a 100 dB noise on one side, to a 60 dB noise

on the other side would have an STC rating of 40. It is the most

commonly used metric in the US for describing sound blockage po-

tential and allows for direct comparison between different products

(i.e., walls, doors, windows, etc.) and manufacturers. Specifically,

the STC rating is calculated as the average noise blockage, in dB,

for 18 different frequency values and has a logarithmic scale. This

rating is based on the ASTM E413-16 standard [4].

Since our work is mostly concerned with the amount of sound

that is able to persist through a barrier and into the space on the

other side, the STC rating is most relevant. The STC ratings for the

different barrier setups that we consider include: STC of 20 for the

door-barrier [27], STC of around 33 for the window-barrier [2], and

STCs of 30 and 34 for the wall-barrier without insulation and with

insulation, respectively. We will revisit these values later on when

interpreting our experimental results.

Noise Reduction Coefficient: The Noise Reduction Coefficient

(NRC) measures the amount of noise that a material absorbs [6].

Where the STC is a rating that describes how much noise can pass

through a barrier, the NRC describes the amount of noise that is left

within a space. Therefore, two materials with the same NRC does

not imply that the same amount of noise is transmitted through

the other side for each of them. NRC values are on a scale of 0 to 1,

where 0 indicates the material will reflect back all of the sound that

hits it, and a value of 1 indicates that all of the sound is absorbed by

the material (e.g., none of it is reflected back). The NRC provides a

single-value approximation of the noise absorption of a material

by averaging the sound absorption coefficient values at four 1/3

octave frequencies (250, 500, 1000 and 2000 hertz) and is rounded

to the nearest 0.05 increment. This rating is based on the ASTM

C423-17 standard [5].

3 ATTACK & THREAT MODEL

In this section we define three BarrierBypass attacks based on dif-

ferent types of barriers (Door, Window, Wall), depicted in Figure 1,

as well as describe our threat model.

3.1 Barrier-Based Attacks

Across-Door Attack: The first barrier that we consider is a stan-

dard interior door. We define the across-door attack to represent all

situations where an attacker may attempt to inject a command to

a victim’s VA that is located across an interior door. If the door is

locked, hindering the attacker from gaining direct access into the

room, there is still the potential for the attacker to issue a command

across the door barrier in order to achieve their goal (i.e., unlock the

door’s smart lock or control some other connected smart device).

In this situation, the gap that exists between the bottom of the

door and the floor can be considered a vulnerability that may be

exploited by this attack. The presence of a small gap will signifi-

cantly increase the audio propagation in the room and increase the

potential for attack success.

Across-Window Attack: The next barrier that we consider is a

standard window. We define the across-window attack to represent

the more likely attack situation that an attacker is attempting to

issue a command from outside the victim’s home or office. Often

the attacker will have no access to desired space, or even to an

adjacent room, so issuing a command through a window may be

their only option. Again, if the user can issue a command from this

location, they may be able to gain access by issuing commands to

other smart devices that are linked to the voice assistant (i.e., smart

locks on the doors, smart garage door). The window used in our

experiments was a builder’s grade, double-pane window that was

located on the balcony of a third floor apartment.

Across-Wall Attack: The last barrier that we consider in this study

is an interior wall. We define the across-wall attack to represent

the situations where an attacker may be in an adjoining room.

This would be a common barrier for attackers in adjacent living

arrangements such as apartment complexes, dorm rooms, or hotels.

An attacker could easily set up the speaker equipment for their

attack in their own space next door and not be disturbed. To al-

low for greater experimental control, we decided to simulate the

across-wall scenario using a soundproof box and wall inserts that

we constructed. We consider two typical constructions of interior

walls that are still present today 1) without insulation and 2) with in-

sulation. The details on the construction of the soundproof box and

the wall inserts are provided in Sections 4.2 and 4.3, respectively.

3.2 Threat Model

In our threat model, the attacker does not need prior knowledge

of the target VA device or its settings. Through a process of initial

testing with different wake words, an attacker can learn what de-

vice is in the victim space and how to activate it (e.g., the Amazon

Echo only has four possible wake word settings so each could be

tested). Also, depending on the placement of the target device, the

attacker could look through a window of the target room (either

in person or automated with a camera) and identify the device

that is being used. The attacker is equipped with a portable loud-

speaker device that is pre-loaded with some voice commands that

they would like to issue. The command audio can be recorded by

the attacker themselves, generated using Text-to-Speech software,

sourced from publicly accessible repositories of human speech sam-

ples, or recorded/synthesized samples of the victim’s voice. Since
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Figure 1: The BarrierBypass attack in the three barrier-based scenarios that we explore in our study including the (a) window
barrier, (b) door barrier, and (c) wall barrier. The attacker is located on one side of the barrier, either in person such as an adjoining
room or remotely using a drone, and attempts to inject an audible command to control the voice assistant located on the other side.

modern voice assistants are not voice specific by default, the at-

tacker does not necessarily need command audio that is in the

victim’s voice, making this attack easier to conduct. In fact, the

attacker can run initial testing in their own space to identify a par-

ticular voice sample that performs the best for targeting a specific

voice assistant device or passing through a specific barrier. Barrier-

Bypass is designed as an untargeted attack that can be executed

independent of the victim. The attacker can use any speech audio

so there is no dependence on acquiring the user’s speech. Therefore,

the same attack setup can also be launched against many different

victims successively in a short period of time. There is also a lot

of freedom for the attack to target any available barrier separat-

ing them from the victim voice assistant (i.e., they can issue the

command across all available windows or walls). In particular, the

attack could launch BarrierBypass remotely using a drone device

equipped with a loudspeaker. The drone can fly around to inject

the command audio and could target all the windows in a home

and even multiple homes (i.e., an entire street or neighborhood)

and "leave" the scene very quickly if they suspect detection. They

could also target apartments/condos in a high-rise building by fly-

ing the drone up to a window. Drones can be purchased cheaply

and can come already equipped with a speaker [38] for $150, or the

speaker device can be purchased by itself for $50 [19] and attached

to any drone. While the BarrierBypass attack is fully functional as

an untargeted attack, there is some potential for a more targeted

approach against a specific victim. Using a replay or synthesis at-

tack, an attacker can fool speaker recognition on a virtual assistant

device and achieve even more severe attack capabilities.

While BarrierBypass is intended to be launched when the user

is not home, there are some scenarios where it can be launched

with the victim present in the space. Because the command audio

loses a lot of power and becomes quieter as it passes through a

physical barrier, there is potential for the injected command to go

unnoticed. In some cases the victim may be occupied doing some

task or activity that may draw their attention away from their voice

assistant (i.e., taking a shower, napping, watching TV in another

room). During these times, the attack can still launch the attack

successfully while avoiding detection.

Since the goal of the attack is to issue a command, we consider

both parts of a voice assistant command audio, the wake word

and the command itself. We recognize that wake word injection

is foremost crucial for the attack because it activates the device to

accept commands. Additionally, injecting the wake word alone can

open up new attack possibilities. When a voice assistant is woken

up, a recording is made that is sent over the internet for processing

and is typically stored in a command history log. Therefore, an

attacker could inject the wake word with the intent of allowing

the device to make an unauthorized recording of the audio in the

space (i.e., user speech, audio from a television, music playing).

The attacker may then compromise the online repository of VA

recordings to learn private user information. While we evaluate the

BarrierBypass attack on voice assistant devices, it is important to note

that the attack is applicable to any voice controllable system.

4 METHODOLOGY

4.1 Experimentation

Parameters: To generalize the results from our experimental attack

simulations, we consider multiple parameters and values. Aside

from the three types of barriers and different setups for each, we also

test VA command audio samples from Male and Female speakers

that are generated using text-to-speech or recorded from live human

speakers. We consider different loudness levels for the injected

audio including 65 dB to represent normal conversational loudness,

75 dB to represent loud speech, and even 85 dB for very loud audio

achievable using a loudspeaker device. We tested different distances

of the VA device from the barrier including 0.1 and 0.5 meters for

the across-window attack, and 0.1, 0.5, 1, 2, and 4 meters for the

across-door attack. Lastly, we ran experiments using two different

types of VA smart speakers.

Experimental Setup: For each experiment we recreate a realis-

tic attack setup with the portable loudspeaker placed on one side

of the barrier (attacker side), and the target smart speaker on the

other side of the barrier (victim side) at certain distances. We en-

sure that the loudspeaker and smart speaker devices are aligned

directly across from each other with the loudspeaker facing the
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barrier. We use the digital sound level meter on the attacker side

to set the SPL of the command audio from the loudspeaker to the

appropriate loudness. As a representative example of a command

an attacker may attempt to issue, we selected the single-word, "Dis-

arm" command. We consider the scenario where an attacker may

be attempting to enter a victim’s home and needs to disable the

security system that is linked to their smart home environment (i.e.,

smart speakers). However, we believe our results are representative

of other types of single-word commands. For each experimental pa-

rameter setting, we attempted the attack 10 times and recorded the

number of successful injections of the wake word and the command

portions. With 12 speaker samples, 3 SPL levels, 10 barrier/distance

combinations, and 2 smart speaker devices, conducted a total of

7,200 attack simulations as part of our evaluation.

Command Audio Samples: We created a set of command au-

dio samples consisting of both Text-to-Speech (TTS) samples and

recordings of Live Human (LH) speakers saying the single-word

command, “Hey Google/Alexa, Disarm”. This command represents

an attacker’s attempt to turn off a user’s home security system so

that the attacker may gain access. We do not make any claims that

our results are representative of other single-word commands, but

we do believe that more complex commands would make the attack

more difficult. Specifically, we use samples from three Male speak-

ers (M1-M3) and three Female speakers (F1-F3), for both sample

types, for a total of 12 different speaker samples. The TTS samples

were generated using a free online text-to-speech generator [1],

and the LH speech samples were recorded directly from volunteers.

Prior to our experimentation, we confirmed that all of the command

audio samples that we collected achieved 100% recognition success

in the non-malicious setting (when there is no ambient noise or

physical barriers present).

Equipment: In our experiments we use a cheap and low-end Sony

SRS-XB2 portable loudspeaker to play the command audio. Notably,

more powerful speakers can improve attack success. For the victim

voice assistant, we use both the Amazon Echo Dot 2 and Google

Home mini smart speakers. In order to ensure the command audio

was played at the correct sound pressure level (SPL) we use a Rolls

SLM305 digital sound level meter. Additionally, we built our own

soundproof box and wall inserts for the across-wall scenario.

4.2 Soundproof Box

For the across-wall attack, we construct a soundproof box in order

to self contain the experiments in a highly controlled space that

allows us to test different wall constructions. This approach allows

to select specific buildingmaterials with sound blockage ratings that

we know beforehand and to ensure that the command audio is only

able to reach the VA device by passing through the wall. We found

this approach easier than attempting to learn what materials were

used in the walls of a real environment. To build the soundproof

box (pictured in Appendix Figure 4a) we followed the instructions

outlined in [16]. We lined a cardboard box with foam board using

3M Super77 Spray Adhesive. Next, we added a layer of 1/4” thick

Dynamat Dynaliner (Self-Adhesive Sound Deadener). Lastly we

added a layer of 3” Acoustic Foam Egg Crate Panels using Auralex

Foamtak adhesive spray. The different layers of the soundproof box

are shown in Appendix Figure 4b.

4.3 Wall Inserts

To experiment with different across-wall barriers, we constructed

two wall inserts to fit inside the soundproof box, pictured in Ap-

pendix Figure 3. These inserts are constructed to the exact measure-

ments that allow the insert to fit inside the soundproof box with

a tight seal around all edges. Appendix Figure 4c shows the setup

for the across-wall attack experiments. The inserts were built with

and without insulation [32]. Both inserts have a 2"x4" wood frame

and are encased in 5/8" drywall panels that are cut to the exact

dimensions of the frame. One of the inserts contains R13 Fiberglass

insulation inside the stud frame, while the other insert was left

empty. The stud frames were connected using 1 1/2" wood screws,

and the drywall was attached with drywall glue and screws.

5 ATTACK RESULTS

In this section we report the BarrierBypass attack results from

our experiments. We recorded and present both wake word and

command injection success for all audio samples. Appendix Tables

4 & 5 show the wake word injection rates for the Amazon Echo Dot

and Google Home mini smart speakers, respectively. And Tables 1

& 2 show the command injection rates. The values represent the

percentage of successful injection out of 10 attempts. We present

results for the standard implementation of BarrierBypass using

non-specific voice audio for command injection, and discuss our

investigation of the targeted implementation for fooling speaker

recognition. To save space, we condensed the tables to include only

the rows that showed instances of injection success. Therefore, any

command SPLs or distances tested that were not included in these

tables had no injection success for any of the speaker samples.

5.1 Standard BarrierBypass:

Across-Wall Attack: (Amazon Echo Dot 2) From our experiments

for the across-wall attack, we observe that both wake word and

command injection success was only possible when the audio was

played at the loudest SPL level, 85 dB, when attacking the Amazon

Echo Dot 2 device. If we compare the average injection success

rates for both types of speakers for the across-wall attack with no

insulation, we get 22% success for the live speaker samples, and

50% success for the TTS samples. And if we look at the across-

wall attack with insulation we find that the wake word injection

success completely diminishes to 0% for the live speakers, and

slightly decreases to 47% for the TTS speakers. Comparing the

injection success averages from the command injection results we

see a similar trend. With no insulation, the live speaker samples

have average injection success of 15% and the TTS speaker have

38%. And when insulation is added we again find the live speaker

sample injection success drops to 0% and the TTS speaker samples

slightly decreases to 35%. However, part of our threat model is

that the attacker can perform preliminary testing and select the

best performing command sample to launch their attack. Choosing

sample TTS-M1, the attack achieves 100% success rates for

wake word and command injection, at 85 dB for both types of

walls, when targeting the Echo Dot .

(Google Home mini) For the Google Home mini we observed

wake word and command injection success at 75 dB and 85 dB, and

much greater success rates overall compared to the Amazon Echo
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Table 1: Command injection success rates, for attacking the Amazon Echo Dot 2, for each Barrier scenario. *Table is condensed to include only rows that showed
some injection success.

Attack Scenario Distance
(m)

Cmd SPL 
(dB)

Live Speaker Recorded Samples Text-to-Speech Samples
LS-F1 LS-F2 LS-F3 LS-M1 LS-M2 LS-M3 TTS-F1 TTS-F2 TTS-F3 TTS-M1 TTS-M2 TTS-M3

Across-Wall
(Not Insulated) 0.1 85 0% 0% 0% 10% 50% 30% 0% 50% 80% 100% 0% 0%

Across-Wall
(Insulated) 0.1 85 0% 0% 0% 0% 0% 0% 0% 40% 70% 100% 0% 0%

Across-Window 0.1 85 10% 0% 0% 0% 0% 0% 0% 90% 0% 0% 80% 0%

Across-Door

0.1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 50% 0%
85 100% 100% 30% 100% 100% 80% 20% 100% 100% 100% 100% 100%

0.5 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 20% 0%
85 0% 30% 0% 100% 100% 0% 10% 100% 100% 100% 100% 100%

1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 0% 0%
85 0% 10% 0% 50% 80% 0% 0% 80% 70% 100% 100% 100%

2 85 0% 0% 0% 20% 0% 0% 0% 90% 50% 100% 100% 70%
4 85 0% 0% 0% 0% 0% 0% 10% 10% 0% 70% 80% 0%

Table 2: Command injection success rates, for attacking the Google Home mini, for each Barrier scenario. *Table is condensed to include only rows that showed
some injection success.

Attack Scenario Distance 
(m)

Cmd SPL 
(dB)

Live Speaker Recorded Samples Text-to-Speech Samples
LS-F1 LS-F2 LS-F3 LS-M1 LS-M2 LS-M3 TTS-F1 TTS-F2 TTS-F3 TTS-M1 TTS-M2 TTS-M3

Across-Wall
(Not Insulated) 0.1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

85 80% 50% 60% 70% 40% 60% 30% 90% 90% 100% 50% 40%
Across-Wall

(Insulated) 0.1 75 0% 0% 0% 0% 0% 0% 0% 10% 0% 100% 0% 0%
85 60% 0% 50% 40% 20% 0% 0% 90% 80% 100% 20% 20%

Across-Window 0.1 85 0% 0% 0% 0% 30% 0% 0% 100% 0% 10% 60% 0%

Across-Door

0.1 75 0% 0% 0% 0% 100% 10% 20% 0% 0% 100% 90% 0%
85 100% 70% 0% 100% 100% 20% 100% 100% 90% 100% 100% 80%

0.5 75 0% 0% 0% 0% 100% 0% 0% 0% 0% 40% 0% 0%
85 20% 0% 0% 20% 100% 0% 100% 10% 0% 100% 100% 0%

1 75 0% 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 0%
85 20% 0% 0% 10% 100% 0% 20% 0% 0% 100% 100% 0%

2 75 0% 0% 0% 0% 60% 0% 0% 0% 0% 0% 0% 0%
85 0% 0% 0% 0% 100% 0% 0% 0% 0% 60% 0% 0%

4 85 0% 0% 0% 0% 80% 0% 10% 0% 0% 40% 0% 0%

Dot 2. Again, comparing the average wake word injection success

rates for both types of speakers we find at 75 dB the average live

speaker sample success is 95%, outperforming the average TTS

sample success of 68%. At 85 dB, both live speaker and TTS samples

achieve 100% wake word injection success. When insulation is

added the average success rates slightly decrease. At 75 dB, the live

speaker and TTS sample success rates decrease to 85% and 57%,

respectively. And at 85 dB the success rates decrease from 100% for

both speaker types with live speaker samples achieving 93% and

TTS samples achieving 72%. Like the Amazon Echo Dot 2 results,

we see a large decrease in command injection success compared

to the wake word injection. At 75 dB, the live speaker samples

had 0% command injection success, and the TTS samples had 17%

command injection success. When the audio was played at 85 dB

these average success rates increase to 60% and 67% for the live

speaker and TTS samples, respectively. When the insulation was

added, we see very similar success rates at the 75 dB level of 0%

and 18% for live speakers and TTS samples, respectively. However,

at 85 dB, we see a decrease in injection success (compared to no

insulation) with live speaker samples dropping to 28% and TTS

samples dropping to 52%. Choosing sample TTS-F3 or TTS-M1

achieves 100% success rates for injecting the wake word at both

SPL levels, and TTS-M1 achieves 100% success for injecting the

command at both SPL levels, when targeting the Google Home.

Across-WindowAttack: In the across-window attackwe observed

injection success at 0.1 meters. Increasing the distance to 0.5 and

1 meter completely diminished injection success for all speaker

samples and audio SPL levels. For both smart speakers we observed

injection success at 75 dB and 85 dB for the wake word, and at 85

dB for the command.

(Amazon Echo Dot 2) At 75 dB we observe no wake word injec-

tion success for the live speaker samples, and only two instances

of injection success (3% average) for the TTS samples. When the

audio was increased to 85 dB the average success rates increased

to 15% for the live speaker samples and 48% for the TTS samples.

No wake command injection success was observed at the 75 dB

level, but at 85 dB we observed one instance of successful injec-

tion (2% average) for the live speaker samples. The TTS samples

showed greater success with an average of 28% command injection

success. Selecting sample TTS-F2 or TTS-M1 allows the attack

to achieve 100% success rates for injecting the wake word at

the 85 dB SPL level, and keeping TTS-F2 achieves 90% success

for injecting the command at the 85 dB SPL level, targeting

the Amazon Echo Dot.

(Google Home mini) In the results for the Google Home mini

we observed nearly identical wake word injection success rates for

the live speaker and TTS samples at both the 75 dB and 85 dB SPL

levels. At 75 dB the live speaker samples had nowakeword injection

success and the TTS samples had only one instance of success (2%

average). When the SPL level was increased to 85 dB, both the live

speaker samples and TTS samples showed an average of 78% wake

word injection success. Looking at the success rates for command

injection, we find that the TTS samples were more successful. The

live speakers samples had an average command injection success

rate of 5% while the TTS samples achieved 28%. Selecting any

of the samples LS-F1, LS-F3, LS-M1, LS-M2, TTS-F2 or TTS-F3

achieves 100% success rates for injecting the wake word at the

85 dB SPL level, and sticking with the TTS-F2 sample achieves

100% success for injecting the command at the 85 dB SPL level,

targeting the Google Home.
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Table 3: Command injection success rates for the drone experiments.

Drone Smart Speaker Speaker ID Command SPL Attack Success

Toys-Sky S167 
Quadcopter

(operating SPL = 85 dB)

Amazon 
Echo Dot

TTS-M1 90 dB 50%

TTS-M2 90 dB 50%

TTS-F2 90 dB 0%

TTS-M1 95 dB 80%

TTS-M2 95 dB 100%

TTS-F2 95 dB 60%

Holy Stone 
HS700

(operating SPL = 73 dB)

Amazon Echo
TTS-M1 85 dB 90%

TTS-M2 85 dB 100%

TTS-F2 85 dB 100%

Google Home
TTS-M1 85 dB 70%

TTS-M2 85 dB 90%

TTS-F2 85 dB 40%

(Drone Attack) Table 3 depicts the results for each drone-based

scenario tested. Firstly, we found that using a drone with an oper-

ating loudness of 85 dB (S167) required command audio be played

at 90+ dB. Specifically, at 90 dB we observed command injection

success only up to 50%. However, increasing the command audio

to 95 dB allowed us to observe attack success up to 100%. Since the

operating loudness of the S167 was equal to the volume of audio

used in our original experiments, the command audio in the pres-

ence of the drone had to be increase by at least 5 dB to overcome

the added noise and achieve an SNR closer to 1.0 for successful

command injection.

For our remaining experiments using the HS700 drone with

a much lower operating loudness level, we observed high rates

of command injection success, similar to what was observed in

prior experiments when no drone was used. Because the operating

loudness of the HS700 is only 73 dB, the 85 dB command audio

level was not hindered by the added noise because it maintained

a similarly high SNR. When targeting the Echo Dot, we observed

attack success up to 100%. And when targeting the Google Home

we observed attack success up to 90%.

Across-Door Attack: In the across-door attack we observed wake

word and command injection success rates at both the 75 dB and 85

dB SPL levels for most of the distances tested. Compared to other

barriers, the results confirm that the door is easiest to compromise.

(Amazon Echo Dot 2) For the live speaker samples, we observed

wake word injection success at the 75 dB for the 0.1-meter distance

only, achieving an average of 60% injection success. At all other

distances there was no wake word injection success at 75 dB. When

the audiowas raised to 85 dB, we observed a greater range of success

across the different distances tested. On average, the live speaker

samples achieved 97%, 80%, 62%, and 12% wake word injection

success for the 0.1, 0.5, 1, and 2-meter distances, respectively. In

comparison, the TTS samples showed greater success for both SPL

levels and all distances. At 75 dB, the TTS samples achieved average

wake word injection success rates of 55%, 37%, 30%, and 17% for

the 0.1, 0.5, 1, and 2-meter distances, respectively. And at 85 dB, we

observe wake word injection success rates of 100% for 0.1 and 0.5

meters, and 88%, 80%, and 50% for 1, 2, and 4-meter distances.

Looking at the results for command injection we again find

decreased success rates compared to the wake word. For the live

speaker samples we did not observe any command injection success

at the 75 dB SPL level. At 85 dB, we observe average success rates

of 85%, 38%, 23% and 3% for the 0.1, 0.5, 1, and 2-meter distances,

respectively. Like the wake word results, we found that the TTS

samples performed better for command injection. At 75 dB we

observed average command injection success rates of 25%, 20%, and

3% for the 0.1, 0.5, and 1-meter distances, respectively. And when

the audio was raised to 85 dB, we observed average success rates

of 87%, 85%, 75%, 68%, and 28% for the 0.1, 0.5, 1, 2, and 4-meter

distances, respectively. While multiple speaker samples showed

very high success rates at certain SPL levels and distances, there

are two samples that outperformed the rest. By choosing TTS-

M1 the attack can achieve 100% success at both SPL levels

up to 2 meter distances, and achieves 90% success at the 4-

meter distance. And choosing TTS-M1 or TTS-M2 for command

injection allows the attack to achieve up to 100% success rates

at the 75 dB SPL level of distances up to 0.5 meters. When the

SPL level is increased to 85 dB, the attack can achieve 100%

success for distances up to 2meters, and 80% success at 4meters

when launching the attack against the Amazon Echo Dot.

(Google Home mini) We observed greater wake word injection

success with the Google Homemini. For both 75 dB and 85 dB levels

we see instances of wake word injection success at all distances that

were tested. At 75 dB, the live speaker samples achieved average

injection success rates of 85%, 52%, 53%, 13%, and 8% for the 0.1, 0.5,

1, 2, and 4-meter distances, respectively. The TTS samples showed

similar success rates of 67%, 53%, 30%, 33%, and 3% for the 0.1,

0.5, 1, 2, and 4-meter distances, respectively. When the audio was

increased to 85 dB, the average success rates increased. The live

speaker samples achieved 100% success for the 0.1, 0.5, and 1-meter

distances, and achieved 78% and 53% for the 2 and 4-meter distances,

respectively. The TTS samples achieved 100% success for the 0.1

and 0.5-meter distances, and 98%, 83%, and 42% success at 1, 2, and

4-meter distances.

For command injection, we observed a decrease in the average

success rates for both speaker types. However, instances of success

were still observed for both the 75 dB and 85 dB SPL levels for

distances up to 2 meters. At 75 dB, the average command injection

success rates for the live speaker samples were 18%, 17%, 15%, and

10% for the 0.1, 0.5, 1, and 2-meter distances. The TTS samples had

less success at the larger distances and only achieved accuracies

of 35% and 7% for the 0.1 and 0.5-meter distances. When the audio

was played at 85 dB, both speaker types showed command injection

success at all distances. The live speaker samples achieved average

success rates of 65%, 23%, 22%, 17%, and 13% for the 0.1, 0.5, 1, 2, and

4-meter distances, respectively. The TTS samples outperformed

the live speaker samples at the shorter distances achieving success

rates of 95%, 52%, 37%, 10%, and 8% for the 0.1, 0.5, 1, 2, and 4-

meter distances, respectively. Choosing LS-M1, LS-M2, TTS-F1,

or TTS-F3 will allow the attack to achieve 100% success for

wake word injection at both SPL levels up to 2-meter distances.

At the 4-meter distance the attack can achieve 50% and 100%

accuracy at the 75 and 85 dB levels, respectively. And isolating

LS-M2 for command injection allows the attack to achieve up

to 100% success for both SPL levels up to 0.5 meters. At the 75

dB SPL level the attack can achieve 90% and 60% success for

the 1 and 2-meter distances, respectively. And when the SPL

level is raised to 85 dB the attack can achieve 100% success

at distances up to 2 meters and 80% success at 4 meters when

attacking the Google Home.
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5.2 Targeted BarrierBypass

Replay Attack: To investigate the potential for BarrierBypass to

launch a replay attack across physical barriers, we performed a

set of experiments using three speaker samples in the across-door

attack setup. Specifically, we trained a voice profile for the LS-M1

speaker on both the Amazon Echo Dot 2 and Google Home mini.

We recorded samples of the command "Alexa/Hey Google, what’s

my name?" from the live speakers LS-M1 and LS-M2, as well as a

generated samples of the command using the text-to-speech speaker

TTS-M1. We selected these speakers because they all achieved 100%

wake word and command recognition in the across-door attack.

Playing each command audio at 85 dB we recorded the number

of times out of 10 attempts that the voice assistant identified the

trained speaker’s voice. We found that the Amazon Echo Dot 2

was 100% accurate at identifying the trained speaker and denying

the other speakers. For the Google Home mini we observed the

device was 80% accurate at identifying the trained speaker, and

100% accurate at not identifying the untrained speakers. These

experiments demonstrated that 1) speaker recognition can identify a

valid user without a barrier present, 2) it will still accept a command

from a random speaker (e.g., from attacker) across a barrier, and 3)

it can identify a replayed voice of the valid user across a barrier.

Synthesis Attack: Synthesis attacks generate fake speech using a

model trained on an original voice such that the synthesized voice

matches the original. We performed another side investigation

to observe the potential for successful synthesis attacks through

physical barriers. We used the voice synthesis model SV2TTS [22]

from [23] to generate the "Alexa/Hey Google, what’s my name?"

command in a live speakers voice. That same live speaker trained

voice profiles on Amazon Echo Dot 1 and Google Home smart

speakers. In the across-door attack setup, we played the synthesized

command at 85 dB and recorded the number of times out of 10

attempts that the voice assistants identified the synthesized audio

as coming from the legitimate user. We found that the synthesized

commands were 100% successful at fooling the speaker recognition

function on both of the smart speakers. This further broadens the

threat level and devastating potential of the BarrierBypass attack

because it demonstrates that fake commands synthesized in a user’s

voice are sufficient enough to fool speaker recognition, even across

physical barriers.

6 SIGNAL ANALYSIS

In order to improve our understanding of why certain speech sam-

ples were successfully injected across the barriers we investigated

what frequencies were most affected by the barriers and whether

we could identify certain frequency characteristics in our command

audio samples that may explain the different levels of success.

Power Spectrum We generated power spectrum graphs that over-

lay the spectrums for each of the command audio samples, isolating

the wake word specifically, in order to compare frequency distribu-

tions and identify specific characteristics. We chose to investigate

the wake word portion of the commands because 1) command

injection cannot occur unless the wake word is successfully is-

sued, and 2) the injection attack experiment results showed greater

success/failure distinction, for the wake word, between different

speakers. In Figure 2 we show the power spectrums of the wake

word portion of the command audio samples for each individual

TTS speaker. In the graphs, the solid blue lines indicate power spec-

trums of speaker samples that were successful at injection, while

the red dashed lines indicate power spectrums of speaker samples

that were not successful. From these graphs, we identify certain

frequency characteristics that are consistent among the successful

samples. Figure 2a shows the full power spectrum of frequencies

from 0 to 8 kHz. Looking at this graph we find there are certain

frequencies in the upper range that have consistencies between

the successful and failing samples. Figures 2b & 2c show power

spectrums that zoom into the frequency ranges of 6 to 7 kHz and 7

to 8 kHz, respectively. In these graphs we can identify five differ-

ent frequency ranges (6.08-6.22 kHz, 6.32-6.82 kHz, 6.93-7.04 kHz,

7.21-7.30 kHz, and 7.34-7.69 kHz) where we find that all samples

that showed successful injection have stronger frequencies in these

ranges than the samples that were not successful.

While more sophisticated exploration is needed to make final

conclusions, we have a few hypotheses about why certain audio

samples performed better than others. First, it is possible that audio

samples that showed greater success utilized more bass in the part

of the wake word that are required for recognition. Therefore, as the

audio passes through the physical barriers and those components

of the audio are strengthened, the audio maintains a higher poten-

tial for successful recognition. Second, voice detection is trained

to differentiate human speech from environmental noise and the

highest frequency range captured (6-8 kHz) may be unique to hu-

man speech played through a loudspeaker, and less likely to occur

naturally in an environment. Lastly, there are certain consonants

that are important for speech intelligibility that appear in the upper

frequency range ( 2-4 kHz) when recorded by a microphone [28].

The difference in frequency power within this range could also

attribute to why some audio samples remain more intelligible (i.e.,

the samples with greater variance of power within that range).

7 SUMMARY AND DISCUSSION

Amazon vs. Google Observations:We observed some interesting

trends between the two smart speaker devices that were used. Since

Amazon and Google have their own speech processing services, it

is reasonable to assume that different types of speaker samples will

show different levels of success. If we consider the average wake

word injection rates for both speaker types against the Amazon

Echo Dot 2, we find that the TTS samples outperformed the live

speaker recorded samples in all but one of the scenarios (Across-

Door, 0.1 meters, 75 dB). Similarly, we find that the TTS samples

outperformed the live speaker samples for command injection in

all scenarios. This indicates that TTS samples are more effective

for launching the BarrierBypass attack against Amazon devices.

Another interesting observation that became apparent when

comparing the injection success rates was that wake word injection

was consistently more successful when attacking the Google Home

mini device. By averaging the success rate of all speaker samples

for each scenario, we find that there was more success at inject-

ing the wake word to the Google device than the Amazon device

across all scenarios that were tested. We also observed through

our experiments that the Google device had significantly more

instances of mis-recognized commands compared to the Amazon
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(a) 0-8 kHz (b) 6-7 kHz (c) 7-8 kHz

Figure 2: Power spectrum graphs of the wake word from each command audio sample that showed injection success (blue) and
failure (red) in the across-wall scenario (without insulation).

device. At lower SPL levels or larger distances where the Amazon

device would simply disregard the audio that it heard, the Google

device would make some attempt at recognition and provide some

type of response, although often incorrect.

Lastly, our work demonstrates the feasibility of BarrierBypass

when launched in scenarios without environmental noise. Naturally,

this would be the most ideal setting to launch the attack and ensure

no other audio in the environment interferes with the injection of

the command. However, we believe that some environmental noise

may be manageable and still allow for a successful attack. With the

inbuilt noise cancellation capabilities of modern day VA devices,

any environmental noise that is quieter than the injected command

audio (after it passes through the barrier) will likely be filtered out

by the device and the command will still be recognized.

Sound Rating Values: We compare our observed results to the

known Sound Transmission Class (STC) and Noise Reduction Co-

efficient (NRC) values for each of the barriers that we tested. We

chose these rating values because they are both based on ASTM

standards. If we consider the STC values for each of the barriers,

we can see that our results are inline with the known values (33

for across-window, 30/34 for across-wall, and 20 for across-door).

Now if we look at the NRC values for the different barrier materials,

we find that both glass and gypsum board (i.e., drywall) have NRC

values of 0.05 and wood has an NRC value of 0.10-0.15. All of these

values are very low on the [0,1] scale indicating that none of the

materials reflect much of the command audio back.

Drone-based Attack: Our drone experiments clearly demonstrate

the feasibility of launching the BarrierBypass with drones. Specifi-

cally, an attacker could utilize a drone with a low operating loudness

that does not impact the required SPL of the command audio to

be injected. And by selecting the best performing command audio

samples they may achieve up to 100% command injection success.

This method of launching the attack provides an attacker the bene-

fits of remote command injection and the ability to target multiple

(potential) victim devices in the same area without having to physi-

cally relocate or move their attack setup. Additionally, an attacker

could utilize the Wi-Peep [21] exploit to initially locate the location

of the target device before launching the attack.

Improving Attack Robustness: From our experimental and anal-

ysis results we have deduced a few ways to increase the robustness

of the BarrierBypass attack. First, while our results at 85 dB demon-

strate the feasibility of the attack, using even louder command

audio will increase the chances of attack success. An attacker can

launch the BarrierBypass attack while the person is away from the

home or they are in a situation where the loud audio will not cause

detection. Higher volumes outside should not cause a problem, es-

pecially in scenarios with high rise buildings. An attacker could

also plant a small wireless speaker onto a door or window that they

could use to inject a command remotely. These devices can be very

small and cheap [18], allowing the attacker to remain discrete.

Learning the type of voice assistant device that the user has

before launching the attack would also help improve the chances

of success. Our results demonstrate that different speaker types

can have different levels of effectiveness for different devices. As a

general observation, using TTS speaker samples would likely be the

most effective for the BarrierBypass attack. Our analysis revealed

that samples with stronger frequencies in the upper range are the

most successful, so specifically choosing TTS samples that contain

these qualities will improve attack success.

Limitations: The results that we observed for the BarrierBypass

attack are somewhat limited to the particular settings that we con-

trolled in our experiments. Firstly, all of our experiments were

conducted in quiet spaces where the only audio present was played

from the loudspeaker device for the purposes of the attack. In a

real-world scenario it is likely that there are other sources of noise

in the environment which would affect the overall success of this

attack. Second, since our attack uses plain, audible commands for

the injection, the BarrierBypass attack is dependent on the user

being away from the device and in another area. Otherwise they

would easily recognize the command injection attempt. Lastly, as

our results demonstrated, there is a distance requirement between

the victim’s device and the barrier (in the across-wall and across-

window scenarios) for the attack to be successful at the SPL levels

we tested. While louder command audio would surely increase the

attack range, it also increases the chance of discovery. Therefore,

the BarrierBypass attack is limited to scenarios where the victim’s

device is in close proximity to the barrier being targeted.

Potential Defenses: The potential defenses against the BarrierBy-

pass attack are largely based on hindering the physical phenomenon

that would allow command audio to bypass physical barriers. One

potential defense against our attack would be to use materials with

higher STC and NRC values. To defend against the attack presented

in this work, an STC of 50 or higher would be required. This can be

achieved using concrete masonry walls, doubling layers of drywall,
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or using specialized materials such as sound deadening paint or

noise blocking curtains. Another potential defense is placing the

smart speaker device at the furthest location from any accessible

barriers. We demonstrate that distances of 4 meters become dif-

ficult for the attack even for an interior door. Another solution

is to build a machine learning classifier that can differentiate be-

tween audio played through a barrier and audio played normally.

As our analysis demonstrated, there are certain frequencies that

are affected/blocked by the different barrier types. Blue et al. [11]

achieve this effect by identifying sub-bass over-excitation which

is a characteristic of audio played from loudspeaker devices and is

not present in human speech. This would also be effective against

BarrierBypass because as the command audio passes through the

physical barrier, the bass/sub-bass components of the audio will

become stronger. Another solution presented by Blue et al. [10]

could also be effective at identifying the BarrierBypass attack. In

their 2MA work, the authors present a two microphone authentica-

tion solution that provides source localization by determining the

direction of arrival. This approach, combined with a predetermined

knowledge of the VA devices placement, could be used to identify

when a command is coming from the other side of a barrier.

8 RELATEDWORK

Replay Attacks: Among all the spoofing attacks, replay attacks

may be the most accessible to adversaries because it simply in-

volves recording and replaying a victim’s voice commands. Existing

studies have shown that such attacks are effective against state-

of-the-art speaker verification systems [15, 17], under scenarios

of replaying over the internet or within the physical space of the

victim. Other than directly replaying the recorded speech, recent

studies also reveal the potential ways of enhancing the stealthiness

and effectiveness of the attack. VMask [40] designed adversarial

machine learning techniques to generate subtle perturbations to

make any recorded speech pass speaker verification systems. To

improve the stealthiness, Guo et al. [20] exploited a loudspeaker

array to make the sound emission focus on the microphone of the

VA system. To bypass existing defense schemes, Yoon et al. [37]

leveraged a mouth simulator instead of a loudspeaker to replay the

recorded speech. However, replay attacks using commands in the

victim’s voice are not always necessary. Many of the current VA

devices available (such as those used in our study) do not employ

strict speaker verification. If the audio is understandable via speech

recognition, the device will execute any command that is given.

Laser-based Injection: Laser-based injection has also been uti-

lized for signal and command injection targeting smart speakers.

Recently, Light Commands [31] has brought up a new security issue,

which is a new class of signal injection attacks targeting micro-

phones of the smart speakers by physically converting a light signal

to sound signal. The attacker can inject arbitrary audio signals to

a target microphone by aiming a specially designed amplitude-

modulated light at the microphone’s aperture. By means of Light

Commands [31], the attacker can obtain control over some com-

modity smart speakers, such as Amazon’s Alexa, Apple’s Siri, and

Google Assistant, at distances up to 110m, which provide a brand

new perspective for attacking smart speakers. One drawback to this

form of attack is that it requires a direct line-of sight between the

attacker and victim’s device. Therefore, simply closing the blinds

or moving your device to a location out of view will thwart this

attack. Our BarrierBypass attack does not require this line of sight

and is much more accurate in practical settings.

Ultrasonic/Hidden Audio Injection: In addition to conventional

attacks through replaying human-sounding speech, researchers

also show the potential of generating unintelligible or even inaudi-

ble attack sounds. Particularly, DolphinAttack [36] modulates the

recorded voice commands onto the ultrasonic frequency range,

which can be demodulated by the microphone due to their non-

linearity. Hidden voice attacks [7, 12] convert recorded speech into

obfuscated voice commands, which are recognizable to the speech

recognition models while remaining unintelligible to humans. Re-

cent studies also demonstrate the possibilities of embedding such

commands into background music [39] or the audio channel of

video streams [41]. By combining hidden voice commands with

live speech, the hybrid commands can even bypass the state-of-the-

art defense schemes [33]. While hidden voice commands introduce

new approaches to evade detection, they are often very complicated

to produce and are not feasible for real-world attack settings. Our

attack does not obfuscate the command itself, but rather injects the

clear-text command through a barrier. Hidden voice commands are

obfuscated and are often misrecognized or not effective. In a recent

work by Abdullah et al. [8], the authors survey current research

works that present hidden voice command type attacks and demon-

strate that most of them will not be successful when launched

against real-world systems. In this work we evaluate BarrierBypass

against live implementations of VA devices and bypass real barriers

with greater ease and feasibility than hidden voice commands.

9 CONCLUSIONS AND FUTUREWORK

In this work, we present the BarrierBypass attack that issues au-

dible voice commands to smart speakers across physical barriers.

Our attack demonstrates the settings in which clean command in-

jection can be successful and what barrier types are at risk. This

attack can be launched in person or remotely via drones or other

controlled devices, and allow an attacker to gain full control over a

victim’s VA device when the device is placed near a barrier and the

scenario allows for loud command audio to be played. Compared to

other command injection attacks, BarrierBypass exploits the lack

of speaker verification present on modern smart speaker devices

and bypasses physical barriers that would hinder other types of

attacks. We evaluated the attack in multiple settings that test dif-

ferent command audio SPL levels and distances. Our experiments

tested three different barrier-based attack scenarios using two live

implementations of smart speaker devices and demonstrate that

100% wake word and command injection accuracy can be achieved

when selecting the highest performing speaker samples and under

certain conditions.
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A APPENDIX

A.1 Additional Images

(a) No Insulation (b) Insulated

Figure 3: Inserts constructed for the Wall-Barrier.

(a) Soundproof Box

Cardboard

Foam Board

Dynamat Dynaliner

Acoustic Foam

(b) Box Layers

Wall Insert

Loudspeaker
Smart speaker

(c) Experiment Aerial View

Figure 4: Images of soundproof box construction and experimental setup.

A.2 Additional Tables

Table 4: Wake Word injection success rates, for attacking the Amazon Echo Dot 2, for each Barrier scenario. *Table is condensed to include only rows that showed
some injection success.

Attack Scenario Distance 
(m)

Cmd SPL 
(dB)

Live Speaker Recorded Samples Text-to-Speech Samples
LS-F1 LS-F2 LS-F3 LS-M1 LS-M2 LS-M3 TTS-F1 TTS-F2 TTS-F3 TTS-M1 TTS-M2 TTS-M3

Across-Wall
(Not Insulated) 0.1 85 0% 0% 0% 30% 70% 30% 0% 100% 100% 100% 0% 0%

Across-Wall
(Insulated) 0.1 85 0% 0% 0% 0% 0% 0% 0% 90% 90% 100% 0% 0%

Across-Window 0.1 75 0% 0% 0% 0% 0% 0% 0% 10% 0% 10% 0% 0%
85 30% 0% 0% 0% 60% 0% 10% 100% 0% 100% 80% 0%

Across-Door

0.1 75 50% 100% 90% 0% 100% 20% 90% 20% 10% 100% 90% 20%
85 100% 100% 100% 100% 100% 80% 100% 100% 100% 100% 100% 100%

0.5 75 0% 0% 0% 0% 0% 0% 50% 0% 0% 100% 70% 0%
85 60% 100% 80% 100% 100% 40% 100% 100% 100% 100% 100% 100%

1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 80% 0%
85 20% 100% 50% 100% 100% 0% 80% 80% 70% 100% 100% 100%

2 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
85 0% 10% 10% 30% 20% 0% 50% 90% 50% 100% 100% 90%

4 85 0% 0% 0% 0% 0% 0% 30% 10% 0% 90% 80% 90%

Table 5: Wake Word injection success rates, for attacking the Google Home mini, for each Barrier scenario. *Table is condensed to include only rows that showed
some injection success.

Attack Scenario Distance 
(m)

Cmd SPL 
(dB)

Live Speaker Recorded Samples Text-to-Speech Samples
LS-F1 LS-F2 LS-F3 LS-M1 LS-M2 LS-M3 TTS-F1 TTS-F2 TTS-F3 TTS-M1 TTS-M2 TTS-M3

Across-Wall
(Not Insulated) 0.1 75 100% 70% 100% 100% 100% 100% 100% 20% 100% 100% 80% 10%

85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Across-Wall

(Insulated) 0.1 75 100% 60% 80% 100% 100% 70% 80% 0% 100% 100% 60% 0%
85 100% 80% 100% 100% 90% 90% 90% 40% 100% 100% 70% 30%

Across-Window 0.1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0%
85 100% 70% 100% 100% 100% 0% 80% 100% 100% 70% 70% 50%

Across-Door

0.1 75 100% 70% 40% 100% 100% 100% 100% 0% 100% 100% 100% 0%
85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0.5 75 100% 0% 10% 100% 100% 0% 100% 20% 100% 100% 0% 0%
85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

1 75 100% 0% 20% 100% 100% 0% 70% 0% 100% 10% 0% 0%
85 100% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100%

2 75 0% 0% 0% 20% 60% 0% 100% 0% 100% 0% 0% 0%
85 100% 100% 70% 100% 100% 0% 100% 30% 100% 80% 90% 100%

4 75 0% 0% 0% 0% 50% 0% 0% 0% 20% 0% 0% 0%
85 0% 50% 70% 100% 100% 0% 100% 30% 80% 40% 0% 0%
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