
SoK: An Analysis of End-to-End Encryption and Authentication
Ceremonies in Secure Messaging Systems
Mashari Alatawi

Texas A&M University
College Station, Texas, USA

mashari@tamu.edu

Nitesh Saxena
Texas A&M University

College Station, Texas, USA
nsaxena@tamu.edu

ABSTRACT
Instant-messaging (IM) and voice over IP (VoIP) applications like
WhatsApp, Zoom, and Skype have made people extremely reliant
on online communications for their audio, video, and text conver-
sations. Since more people are using these platforms to talk to each
other and share sensitive information, many ongoing concerns have
been raised about how the government and law enforcement moni-
tor these platforms. Due to these concerns, the need for a method
to secure confidential messages and electronic conversations has
grown. This solution could be achieved by implementing an end-to-
end encryption (E2EE) system without relying on any first or third
parties, such as an online service or a centralized infrastructure
like a public key infrastructure (PKI), which may be attacked, mali-
cious, or coerced by law enforcement and government surveillance
programs. In this systematization of knowledge paper, we first in-
troduce the most popular E2EE apps, including their underlying
E2EE messaging protocols. Then, based on the existing research
literature, we investigate and systematize their E2EE features, in-
cluding their underlying authentication ceremonies. Even though
many research studies have examined some messaging services,
we analyze and evaluate a broader set of the most popular E2EE
apps and their underlying authentication ceremonies. Based on
our evaluation, we have determined that all current E2EE apps,
particularly when operating in opportunistic E2EE mode, are in-
capable of repelling active man-in-the-middle (MitM) attacks. In
addition, we find that none of the current E2EE apps provide better
and more usable authentication ceremonies, resulting in insecure
E2EE communications against active MitM attacks. The conclu-
sions of this systematization paper could influence future research
in the field, including any improvements to the implementation of
E2EE systems and authentication ceremonies that provide powerful
protections against eavesdropping and MitM attacks.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
E2EE apps, authentication ceremony, MitM attacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9859-6/23/05. . . $15.00
https://doi.org/10.1145/3558482.3581773

ACM Reference Format:
Mashari Alatawi and Nitesh Saxena. 2023. SoK: An Analysis of End-to-End
Encryption andAuthentication Ceremonies in SecureMessaging Systems. In
Proceedings of the 16th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’23), May 29-June 1, 2023, Guildford, United
Kingdom. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3558482.3581773

1 INTRODUCTION
End-to-end encryption (E2EE) ensures that the contents of a mes-
sage are unintelligible to anyone except the sender and the intended
recipient, preventing service providers, government surveillance
programs, or man-in-the-middle (MitM) attackers from reading the
exchanged messages. After the Snowden revelations about gov-
ernment snooping in 2013 [56], more instant messaging (IM) and
voice over IP (VoIP) applications claimed to support E2EE. How-
ever, these IM and VoIP apps are susceptible to numerous forms of
attack, including MitM and eavesdropping attacks [6, 72]. Govern-
ment agencies, hackers, and even IM and VoIP service providers
could monitor these apps to conduct surveillance programs or steal
sensitive information [5, 10].

The community of security researchers began considering pri-
vate chat apps and secure online communication systems long ago.
In 2004, the off-the-record (OTR) protocol was proposed to provide
E2EE [4]. It has been implemented as a plugin in common IM clients
such as Pidgin [44], but it is not widely used due to usability issues
[55, 62]. In 2013, Snowden’s revelations increased public awareness
of underlying privacy concerns [35]. Consequently, other alter-
natives have emerged in the form of new encrypted messaging
systems that provide E2EE communications by adopting and ex-
panding the OTR protocol. Open Whisper Systems released Signal,
a new breakthrough E2EE protocol, in 2013 to provide E2EE as well
as advanced security features such as forward secrecy and future
secrecy [7, 16]. Signal was designed to enable both synchronous and
asynchronous messaging environments [36]. The Signal protocol
has been used by other IM and VoIP apps in recent years, including
Signal and WhatsApp. Google is now implementing E2EE for rich
communication services (RCSs) in Android Messages, and Zoom
has also recently implemented it for meetings [3, 29]. Despite the
fact that numerous IM and VoIP apps have included E2EE features,
they vary in terms of their security and usability properties, privacy
concepts, threat models, and security claims [62].
Our Contributions: Our contributions in this work are two fold.
First, we examine the most popular E2EE apps [11, 14, 15, 20, 27,
32, 33, 39, 40, 51, 53, 54, 58, 60, 66, 69–71, 74] and their underlying
E2EE messaging protocols. Based on the current research litera-
ture [1, 4, 7, 9, 16, 17, 21, 26, 36, 47–50, 57, 64], we then scrutinize
and systematize their E2EE features, including their underlying

187

https://doi.org/10.1145/3558482.3581773
https://doi.org/10.1145/3558482.3581773
https://doi.org/10.1145/3558482.3581773
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558482.3581773&domain=pdf&date_stamp=2023-06-28

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

authentication ceremonies. Specifically, we examine the most cru-
cial aspect of key management, i.e., verifying and authenticating
key fingerprints (an authentication ceremony), and whether the
verification process is susceptible to human errors, which could
lead to MitM attacks. We also investigate and systematize the secu-
rity and usability of authentication ceremonies used in E2EE apps.
Even though several research studies have been done to explore
popular messaging services in terms of their security, usability,
and adoption, this work will examine a broader set of the most
popular E2EE apps and their underlying authentication ceremonies.
The outcomes of this systematization paper could provide valu-
able suggestions for future research to strengthen current E2EE
implementations and enhance authentication ceremonies in E2EE
systems.

2 BACKGROUND
2.1 State-of-the-Art End-to-End Encryption
The state-of-the-art E2EE implementation ensures that messages
cannot be read by anyone except the endpoints of communication.
Figure 1 displays how Alice and Bob encrypt messages using state-
of-the-art E2EE. Therefore, the majority of E2EE apps utilize this
E2EE scheme since it ensures robust end-to-end data confidentiality
[62]. However, these apps use a service provider to store users’ pub-
lic keys, exchange public keys, and relay encrypted data between
endpoints. This type of E2EE implementation, which relies on a
server to distribute keys, can thwart a passive MitM attacker but
cannot thwart an active MitM attacker, who can substitute keys
and thereby compromise the entire communication between autho-
rized users. Consequently, a malicious or hacked server can easily
mount an attack known as a key substitution attack during the
key-exchange service, compromising the entire E2EE system. Many
E2EE apps let users take part in a hidden task called an authentica-
tion ceremony. During this task, users verify their key fingerprints
and, if they do it right, defeat active MitM attackers.

Figure 1: A high-level diagram of the state-of-the-art end-to-end encryption

2.2 Properties for Secure Messaging Systems
• Confidentiality: It keeps the contents of a message from
being shared without permission. This means that only the
sender and the intended recipient can read messages.

• Integrity: It ensures that a message has not been changed
while being sent, so that the intended recipient gets the
original message.

• Authentication: It exposes the identities of both the sender
and the receiver in a private conversation, which ensures
that a message was sent from the claimed sender.

• Perfect Forward Secrecy: It guarantees that data that has
already been encrypted cannot be decrypted, even if all the
key materials are compromised.

• Future Secrecy: It is also called backward secrecy, which en-
sures that encrypted data cannot be decrypted in the future,
even if all the key materials are compromised.

• Deniability: To achieve this property, both conversation
parties must be able to deny that they sent or made amessage.
This makes it impossible for other people to prove that a
certain message was sent by a certain conversation party.

2.3 Threat Model
Inspired by a comprehensive survey on secure messaging by Unger
et al. [62], we assume the existence of the following attackers:

• Local Adversary: An (active/passive) attacker who can con-
trol local networks on either side of a conversation, such as
the owners of open wireless access points.

• Global Adversary: An (active/passive) attacker who can
take over many parts of Internet service (e.g., powerful
nation-states or large Internet service providers).

• Service Providers: All service operators could be consid-
ered as potential attackers when E2EE apps utilize a central-
ized infrastructure for distributing public keys and storing or
forwarding messages, such as using a public-key directory.

As stated in [62], we assume that attackers can utilize E2EE apps,
allowing them to create accounts and send messages as legitimate
users. We also assume that the endpoints of E2EE apps are secure.

2.4 End-to-End Encrypted Messaging Protocols
2.4.1 Off-the-Record In 2004, the OTR protocol was introduced
as a cryptographic protocol to enable the E2EE feature [4]. It was
a substitute for pretty good privacy (PGP) to provide complete
forward secrecy and deniable authentication, simulating private
communication in the real world. Due to the vulnerability of the
basic Diffie-Hellman key exchange protocol to MitM attacks, the
OTR protocol uses a variation of the SIGMA protocol [28] as the
authenticated key exchange to provide authentication [45]. The
OTR protocol has been implemented as a plugin in standard IM
clients such as Pidgin; however, researchers have found that these
implementations have a number of usability problems [55, 62]. Fur-
thermore, the OTR protocol does not support asynchronous mes-
saging environments or group messaging because it was designed
for synchronous messaging environments [12].

2.4.2 Signal The Signal Protocol was introduced in 2013 by Open
Whisper Systems to provide E2EE as well as enhanced security fea-
tures such as forward secrecy and future secrecy [7, 16]. It supports
both synchronous and asynchronous messaging environments [36].
Signal uses the Extended Triple Diffie-Hellman (X3DH) key agree-
ment protocol to establish a shared secret key between two users,
who mutually authenticate one another based on their public keys,
thereby ensuring forward secrecy and cryptographic deniability
[37]. The X3DH protocol is designed for asynchronous environ-
ments, in which a user (Bob) can go offline after uploading informa-
tion to a server, and another user (Alice) can use that information
to send encrypted data to Bob, thereby establishing a shared secret
key for future communication. Using the shared secret key, both

188

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

users can use the Double Ratchet algorithm to exchange encrypted
messages [43]. The Double Ratchet algorithm leverages the key
derivation function (KDF) chain to derive secret keys for encrypting
messages. In recent years, the Signal protocol has been adopted by
several E2EE apps. Furthermore, some protocols customize their
own specifications to copy certain security features from the Sig-
nal protocol and thus implement the E2EE feature. For instance,
the Matrix protocol [38] uses the Olm encryption library, which is
based on the Signal protocol, to implement the E2EE feature in the
Element app [11].

2.4.3 Proprietary and Other Protocols Several E2EE apps use
their own proprietary protocols, such as Apple’s iMessage, Tele-
gram’s MTProto protocol, and many other E2EE apps (discussed
further in Section 4). Linphone [33] and Silent Phone [53] use the
Zimmermann Real-time Transport Protocol (ZRTP) [73] to imple-
ment the E2EE feature for voice and video communications. ZRTP
is a key agreement protocol that uses Diffie-Hellman key exchange
to establish a shared secret between two endpoints. This shared
secret is then used to establish secure real-time transport protocol
(SRTP) sessions for VoIP apps [73]. However, the Diffie-Hellman
key exchange is known to be susceptible to MitM attacks, and there-
fore, ZRTP uses a mechanism based on a short authentication string
(SAS) to prevent this type of attack [63]. This SAS can be validated
by end users to guarantee that no MitM attack has occurred.

2.5 Related Work
Even though various aspects of the secure messaging landscape
have been systematized in prior research studies, this systemati-
zation of knowledge paper provides a unique and complementary
perspective. Prior work has focused on secure messaging and con-
ducted only a high-level investigation of the basic concepts and
features of E2EE messaging protocols [4, 7, 16, 45]. Our work is, to
the best of our knowledge, the first to scrutinize a broader set of
the most popular E2EE apps, including their underlying authenti-
cation ceremonies. Some other papers also investigate the security
of E2EE apps and the usability of their underlying authentication
ceremonies; however, they do so without conducting a systematic
study that covers a large number of E2EE apps, instead focusing
only on one or a few apps [1, 17, 21, 26, 46, 47, 50, 64, 65]. These
studies also lack a focus on E2EE security and the usability of the au-
thentication ceremony in group-based scenarios. The most closely
related work is by Herzberg et al. [22], which reveals the problems
and limitations of the current authentication ceremony in some
secure messaging apps. We share a common approach of bringing
to light the importance of the authentication ceremony and its us-
ability in current E2EE apps; however, we cover a large number of
popular E2EE apps, and we focus not only on the authentication
ceremony but also on the implementation of the E2EE feature in
these E2EE apps. We also make a greater effort to apply a method-
ology with which to evaluate implementing the E2EE feature and
authentication ceremonies in group-based scenarios.

3 SYSTEMATIZATION METHODOLOGY
Recent claims have been made that numerous IM and VoIP apps pro-
vide secure messaging solutions. However, they have been plagued

by unclear security claims and usability issues [62]. To do a sys-
tematization of knowledge on the most popular E2EE apps, we
developed and implemented the approach described in this sec-
tion. Since the Snowden disclosures about widespread government
surveillance in 2013 [56], both academia and industry have shown
an increasing interest in developing secure communications solu-
tions. In recent years, the number of E2EE apps has also increased
significantly. Based on the existing research literature and publicly
available messaging apps, we restricted our analysis to the most
popular E2EE apps, focusing on the systematization and evalua-
tion of how they implemented their E2EE functionality and their
underlying authentication ceremonies. We examined the pertinent
white papers, documentation, research literature, and E2EE proto-
col definitions. In addition to examining their E2EE functionality
and implementation, we also investigated their underlying authen-
tication ceremonies. We meticulously examined prominent E2EE
apps (see Section 4). We limited our study to a collection of highly
popular E2EE apps compatible with Android or iOS, based on the
number of installations and ratings derived from the Google Play
Store. The Apple App Store does not publicly disclose the number
of app installations; however, we believe that the data currently
available from the Google Play Store provides adequate informa-
tion on app popularity. Table 3 in Appendix A.3 shows 17 highly
popular E2EE apps and was last updated on December 25, 2022.
We covered apps that implement the state-of-the-art E2EE feature
and provide documentation of their E2EE functionality. Because
the apps listed in Table 3 are all compatible with both Android and
iOS, we had to include two additional apps in our study (namely,
FaceTime and Messages by Apple) that are only supported on Ap-
ple devices as default apps but not supported on Android devices.
Both apps also implement the state-of-the-art E2EE feature and
provide documentation of their E2EE functionality. We looked at
relevant white papers, E2EE documentation, and research litera-
ture based on top-tier conferences and Google Scholar citations.
These academic and non-academic references were used to investi-
gate how E2EE functionality is currently being used in E2EE apps.
We specifically looked for the main E2EE protocol that the E2EE
app uses to implement E2EE functionality and the cryptographic
primitives that the main E2EE protocol depends on. We also con-
ducted a practical analysis of the E2EE features provided by E2EE
apps and the various code verification methods used by E2EE apps
during their underlying authentication ceremonies. During this
stage, we examined the usability of authentication ceremonies in
E2EE apps and how human errors may impact usability and lead to
MitM attacks based on the existing research literature. For the E2EE
apps in focus, we intended to evaluate several criteria regarding
their implementation of the E2EE feature, including their underly-
ing E2EE message protocols and authentication ceremonies. The
criteria being evaluated can be classified into two categories:

A. Security
• The E2EE protocols used by E2EE applications to imple-
ment the E2EE feature.

• Whether the E2EE feature is provided by default or as an
optional property.

• Whether or not an E2EE application implements the E2EE
feature for text messaging and audio/video calls.

189

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

• Whether or not E2EE applications implement the E2EE
feature in group scenarios, such as group messages and
group audio or video calls.

• Whether the opportunistic E2EE mode is vulnerable to
active MitM attacks.

• Whether an E2EE application provides a way for verifying
and authenticating the key fingerprints (the authentication
ceremony) to thwart active MitM attacks.

• Whether the authentication ceremony is a primary task
or not.

B. Usability
• How users find and locate the authentication ceremony
in order to perform it.

• The terminology that E2EE applications use to refer to the
authentication ceremony.

• How a key fingerprint is represented to a user to partici-
pate in an authentication ceremony.

• How users are asked to do the authentication ceremony.
• Howusers perform the authentication ceremony in groups.
• Whether an E2EE application allows users to exchange
their fingerprint codes via an out-of-band (OOB) channel
directly from the app.

• Whether the authentication ceremony is vulnerable to
human errors, which could lead to MitM attacks.

4 ANALYSIS OF E2EE APPLICATIONS
This section will compare the evaluated E2EE apps regarding crite-
ria related to implementing the E2EE feature. A brief summary of
these implementations can be found in Table 1. The results were
primarily taken from our experiments examining the E2EE apps,
as well as the E2EE documentation and the official security white
papers of the corresponding E2EE apps. We examine how the E2EE
feature is currently implemented in the most popular E2EE apps
(only smartphone apps) that claim to offer E2EE messaging solu-
tions. On these apps, the E2EE feature is either turned on by default
or can be turned on by the user. In both cases, these apps use an op-
portunistic E2EE mode, which means they set up a secure channel
between two parties without authenticating the other party [31].
This opportunistic E2EE mode can defeat a passive MitM attacker,
but it cannot defeat an active MitM attacker who can change keys
and put all communication between legitimate users at risk [21].

In our experiments, we examined every E2EE app in two stages.
In the first stage, we analyzed relevant white papers and E2EE
documentation to determine which E2EE protocol is used by each
E2EE app and what cryptographic primitives are implemented by
the E2EE protocol. In the second stage, we did our own tests to see
how the E2EE feature worked in each E2EE app and how it was
implemented in both one-to-one and group-based conversations.
To this end, we used four different phone devices (namely Apple
iPhone X, Apple iPhone 7 Plus, Samsung Android 5, and Google
Pixel) and installed the latest version of each E2EE app on them. For
one-to-one scenarios, we used the installed E2EE app to send a text
message from one phone to another. This allowed us to see if the
text message was encrypted by default in E2EE mode or if the user
had to turn on the optional E2EE mode. We also followed the same
procedure for audio and video conversations between two separate

smartphones to assess whether the E2EE app offers the E2EE feature
by default or as an opt-in when initiating audio and video calls.
For group-based scenarios, we set up a group of three different
smartphones in the E2EE app that supports group messaging. We
then followed the same procedures for sending text messages as
well as making audio and video calls in group-based scenarios.
This enabled us to determine whether group-based text messaging,
audio, and video conversations implement the E2EE functionality by
default or as an opt-in. In E2EE apps, any conversation between two
users is called a one-to-one scenario, while a conversation between
more than two users is called a group-based scenario. Therefore, we
elected to confine our analysis to a group size of three different
smartphones. This was very helpful in providing results and lessons
for our current study. However, in future studies, the group size
could be increased to more than three to further investigate the
E2EE functionality in contemporary messaging apps.

4.1 E2EE Apps Using the Signal Protocol
Most E2EE apps use the Signal protocol or rely heavily on custom
protocols that copy some of the Signal protocol’s security features.
The Signal protocol is designed to work in both synchronous and
asynchronousmessaging environments, so it uses a key-distribution
server to store the identities and ephemeral keys of its users. Frosch
et al. [16] and Cohn-Gordon et al. [7] examined the security of the
Signal protocol in their research studies. They found that users had
to sign up and upload their long-term, medium-term, and ephemeral
public keys to a key distribution server as part of the registration
process. In [7], the authors also found that the key-distribution
server could become a malicious server and, as a result, be used
in MitM attacks. They found that Signal has an authentication
ceremony that lets users verify public keys through anOOB channel.
However, they had doubts about some implementations of the
Signal protocol that might not require such a ceremony to be done.
This would let a rogue server or an attacker with control over
identity registration change keys and get messages from the other
end. Herzberg et al. [21] examined howWhatsApp, Viber, Telegram,
and Signal utilized E2EE and found that all four apps supported
both the opportunistic E2EE and the authenticated E2EE modes.
The authors stated that the authenticated E2EE mode matches the
classical definition of E2EE, which protects users from a rogue
MitM operator, while the opportunistic E2EE mode alone is not
safe against this type of attack. They found that most users did not
know what the difference was between these two modes and did
not use them effectively. In the following, we introduce each E2EE
app in more detail. We also present our evaluation, which goes into
more depth about the E2EE features that these E2EE apps offer.

4.1.1 Facebook Messenger It is an IM application with voice
and video calling capabilities, developed by Meta [14]. It uses the
Signal protocol to implement E2EE functionality in chats and calls
through a feature called Secret Conversation [13]. However, the
Secret Conversation feature is not the default option, and therefore,
users must enable the Secret Conversation mode manually and ask
their intended recipients to enable the Secret Conversation mode on
their devices as well. In addition to individual chats and calls, the
Facebook Messenger app also implements the E2EE functionality
in group chats and calls through the Secret Conversation feature.

190

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

4.1.2 Signal It is an application for IM and VoIP services [51]. It
uses the Signal protocol to implement E2EE in all individual and
group chats by default [52]. It also supports E2EE for voice and
video communications between two parties and group video calls.
RingRTC, an open-source video calling library written in Rust, is
used by the Signal app to provide video and voice calling services
on top of web real-time communication (WebRTC).

4.1.3 WhatsApp It is an application owned by Meta for IM and
VoIP services [69]. It uses the Signal protocol to implement the
E2EE feature by default in all messages and calls for all one-to-one
and group scenarios [68]. In all one-to-one and group calls, a user
initiates a voice or video call by establishing encrypted sessions
with each of the devices of the recipient, such as those used in a
messaging scenario. Once the call is made, SRTP is used to protect
it with master secret keys that are made for each device of the
recipient.

4.1.4 Other E2EE Applications Due to space constraints, other
E2EE apps that use the Signal protocol are included in Appendix A.1.
These E2EE apps are listed in Tables 1 and 2, but readers unfamiliar
with them can refer to Appendix A.1.

4.2 E2EE Apps Using Proprietary Protocols
Here, we will introduce E2EE apps that implement their own pro-
prietary protocols to provide the E2EE feature. We will also present
our evaluation, in which we investigate their implementations of
the E2EE feature in more detail.

4.2.1 Telegram It is a cloud-based messenger for IM and VoIP
services [58]. It uses its customized protocol, called the MTProto
protocol, to implement the E2EE feature in one-to-one chats and
calls [59]. However, the E2EE feature is not supported in group
scenarios. In all one-to-one scenarios, the Telegram app does not
implement the E2EE functionality by default; thus, users must en-
able the Secret Chat option to protect their communications in an
E2EE fashion. The Diffie-Hellman protocol is used to exchange
cryptographic keys in the MTProto protocol. Once a Secret Chat is
set up, the devices that are taking part in it exchange these keys.

4.2.2 Viber It is an IM and VoIP application owned by Rakuten
[66]. It implements the E2EE feature by using the same concepts
as the Signal protocol [67]. However, the Viber app uses its own
implementation to protect all messages and calls in an E2EE fashion.
In the Viber app, the E2EE feature is enabled by default in all one-
to-one and group scenarios. In Viber calls, the audio and video call
stream is converted to the SRTP protocol and encrypted with the
Salsa20 algorithm.

4.2.3 Zoom It is a cloud platform for video meetings, VoIP, and
team chat [74]. Zoom recently added the E2EE feature to Zoom
meetings and Zoom Phone calls between two end users [29, 30].
By default, Zoom meetings and Zoom Phone calls between two
end users are not E2EE. This means that users must turn on the
E2EE feature through the Zoom web portal. To implement the
E2EE feature, Zoom uses public-key cryptography to distribute a
session key to all users who are taking part in a Zoom meeting [75].
Zoom uses Diffie-Hellman over Curve25519, the Edwards-curve
digital signature algorithm (EdDSA), and the advanced encryption

standard (AES) in GCMmode for its E2EE feature in Zoommeetings.
Key derivation is done via the HMAC-based key derivation function
(HKDF). Zoom uses the same cryptographic techniques and key
management system as Zoom meetings for the E2EE feature in
one-to-one Zoom Phone calls.

4.2.4 Other E2EE Applications Due to space constraints, other
E2EE apps that use their own E2EE protocols can be found in
Appendix A.2. These E2EE apps are listed in Tables 1 and 2, but
readers unfamiliar with them can refer to Appendix A.2.

4.3 The Opacity of E2EE Applications
Many E2EE apps mislead users by claiming to be encrypted or
secure communications platforms. According to a comprehensive
survey of secure messaging conducted by Unger et al. [62], sev-
eral of these apps do not provide E2EE messaging solutions as
advertised. Not all E2EE apps support the E2EE feature by default,
and that may confuse new users who use these apps for sending
sensitive information. Additionally, as was mentioned before, the
opportunistic E2EE mode is resistant to passive MitM attacks but
susceptible to active MitM attacks. The majority of E2EE apps alert
users that the opportunistic E2EE mode is activated and their com-
munications are E2EE by using various indicators, such as special
notification messages and lock icons, to indicate that the mode is
enabled (see Figure 3 in Appendix A.3). This could make it more
difficult for average users to detect active MitM attacks, especially
if they are unaware of the security risks caused by not verifying key
fingerprints. In [1], Abu-Salma et al. conducted a user study with
22 participants (eleven of whom were Telegram users) and investi-
gated several security elements of the Telegram app. The authors
reported that the design of the user interface had a detrimental im-
pact on the behavior of the participants during the authentication
ceremony due to several design issues. They also found that all par-
ticipants were unaware of the usefulness of fingerprints. In addition,
they observed that, despite having prior experience with Telegram,
none of the eleven users had used the key fingerprints. Users must
therefore participate in an authentication ceremony to verify their
key fingerprints and thwart active MitM attacks. Participation in
the verification and authentication of these key fingerprints will
enable the authenticated E2EE mode, which is supported by the
majority of E2EE apps (discussed further in Section 5).

5 ANALYSIS OF THE AUTHENTICATION
CEREMONY

After the previous section investigated the current implementation
of the E2EE feature in many E2EE apps, this section builds on that
and examines the usability of the authentication ceremony in E2EE
apps and how users can participate in such an authentication cere-
mony. For each E2EE app, we evaluate the implementation of the
authentication-ceremony-related criteria outlined in Section 3. This
provides an overview of the differences between E2EE apps as well
as their underlying authentication ceremonies. We examine the
current implementation of the authentication ceremony in E2EE
apps based on relevant white papers, documentation, and academic
literature, while some information was collected by examining the
E2EE apps. All E2EE apps analyzed in this study use the same ap-
proach to implement the authentication ceremony, which consists

191

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

Table 1: The Security of Implementing End-to-End Encryption Feature in End-to-End Encrypted Applications

Application E2EE
Protocol

E2EE Feature in One-to-One Scenario E2EE Feature in Group Scenario Vulnerable
to Active

MitM Attack

Providing a Method
to Switch to the

Authenticated E2EE Mode
E2EE
Mode In Chat In Audio

Call
In Video

Call
E2EE
Mode In Chat In Audio

Call
In Video

Call

Element Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Facebook
Messenger Signal Opportunistic

via an opt-in ✓ ✓ ✓
Opportunistic
via an opt-in ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

FaceTime Proprietary Opportunistic
by default N/A ✓ ✓

Opportunistic
by default N/A ✓ ✓ Yes No

Google Meet Signal Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes No

KakaoTalk Proprietary Opportunistic
via an opt-in ✓ ✗ ✗

Opportunistic
via an opt-in ✓ ✗ ✗ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

LINE Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✗ ✗ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Linphone Proprietary Opportunistic
via an opt-in ✓ ✓ ✓

Opportunistic
via an opt-in ✓ ✗ ✗ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Messages
by Apple Proprietary

Opportunistic
by default

via iMessage
✓ N/A N/A

Opportunistic
by default

via iMessage
✓ N/A N/A Yes No

Messages
by Google Signal

Opportunistic
by default
in RCS

✓ N/A N/A N/A N/A N/A N/A Yes
Yes, it relies on users
to optionally perform

an authentication ceremony.

Signal Signal Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Silent Phone Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Skype Signal Opportunistic
via an opt-in ✓ ✓ ✗ N/A N/A N/A N/A Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Telegram Proprietary Opportunistic
via an opt-in ✓ ✓ ✓ N/A N/A N/A N/A Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Threema Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Viber Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

WhatsApp Signal Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Wickr Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Wire Proprietary Opportunistic
by default ✓ ✓ ✓

Opportunistic
by default ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.

Zoom Proprietary Opportunistic
via an opt-in ✓ ✓ ✓

Opportunistic
via an opt-in ✓ ✓ ✓ Yes

Yes, it relies on users
to optionally perform

an authentication ceremony.
✓ indicates that the E2EE feature is provided, and ✗ indicates that the E2EE feature is not provided.

of making this task optional, relying on users to find and perform it,
and providing users with similar code representations to compare
and verify their key fingerprints. Therefore, instead of focusing on
a single app as in the previous section, this section examines and
evaluates the authentication ceremony as a whole, using the knowl-
edge gained from examining the E2EE apps and relevant references.
In the following subsections, we will provide an in-depth analysis
of the authentication ceremony and its usability in all E2EE apps.
Note that in practice, some E2EE apps have the same usability chal-
lenges and technical concerns with the authentication ceremony. A
brief summary of this analysis can be found in Table 2.

5.1 Finding and Performing the Ceremony
Participating in an authentication ceremony and successfully com-
pleting it will enable the authenticated E2EE mode, which is con-
sistent with the traditional definition of E2EE. In contrast to the
opportunistic E2EE mode, the authenticated E2EE mode guarantees

that no active MitM attackers are involved in any private conver-
sation between two end users. Whenever Alice and Bob want to
communicate using an E2EE app, they both use a service provider
to exchange their public encryption keys and establish a secret
shared key for future communication. This secret shared key is
only known to Alice and Bob. No one else, not even the service
provider, can find out what the value of the secret shared key is
or decrypt any of the messages being sent. However, these service
providers could use fake public keys during the key-exchange ser-
vice to get around the protection that E2EE apps offer against rogue
or compromised service providers. For example, when Alice wants
to talk to Bob through an E2EE app, she will get his public key
from a service provider to encrypt a shared secret key and then
send it to him through the service provider. However, a malicious
provider can easily mount a key substitution attack and furnish her
with a phony public key under its control. The rogue provider can
now decrypt the shared secret key, re-encrypt it using Bob’s real

192

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

public key, and then send it to Bob, claiming that it was sent by
Alice. Thus, the rogue provider has become an active MitM attacker
between Alice and Bob. This means that the attacker can read or
change the messages Alice and Bob send each other without the
knowledge of the two parties being attacked. In the real world, all
E2EE apps mentioned in Section 4 implement this opportunistic
E2EE mode by default, which is only known to be secure against
passive MitM attacks. To switch to the authenticated E2EE mode
and thwart active MitM attacks, both end users need to participate
in an authentication ceremony and successfully complete it.

Despite the significance of the authentication ceremony in detect-
ing active MitM attacks, the authentication ceremony is optional
in all current E2EE apps. Consequently, users may be susceptible
to human errors, which can result in MitM attacks. Therefore, the
authenticated E2EE mode depends on the users and how they in-
teract in the authentication ceremony to establish trust and enable
secure communication. It is also common for users to ignore the
authentication process until they are encouraged to do so, at which
point they may struggle and misunderstand the steps, leaving them-
selves vulnerable to MitM attacks. In practice, all the E2EE apps
listed in Section 4 (that provide a mechanism for performing the
authentication ceremony) rely on end-users to activate the authen-
ticated E2EE mode, from being aware of the security risks and
the importance of authentication in preventing such an attack, to
taking the necessary steps for the authentication ceremony to be
successful. This includes navigating the app’s settings and menu
system to find the terminology used to refer to the authentication
ceremony. Figure 4 in Appendix A.3 depicts some E2EE apps and
the terminologies they use to refer to the authentication ceremony.
After locating the authentication ceremony, the end-users must
compare and verify the key fingerprints before deciding whether or
not to continue communicating. Also, end users must comprehend
the meaning of failure (non-matching key fingerprints) to cease
communication. As shown in Table 2, all E2EE apps in Section 4
(that offer a mechanism for performing the authentication cere-
mony) use different terminologies and representations of the key
fingerprints in their authentication ceremonies.

5.2 Fingerprint Representations
During the authentication ceremony, many E2EE apps use textual
(words and sentences), numeric, hexadecimal, and graphical finger-
print representations. The representation of the key fingerprints is
an essential component of the authentication ceremony in all E2EE
apps, and it plays a significant role in assisting users to perform the
authentication ceremony correctly and thwart active MitM attacks.
In such authentication ceremonies, E2EE apps represent the finger-
prints of the encryption key or the fingerprints of the public keys
of other users using a variety of approaches (see Table 2). These
fingerprints can be compared and verified in person or over an
OOB channel, such as a text message, email, or phone call. Such a
fingerprint is encoded into a readable/exchangeable code to facili-
tate manual comparison and verification. In the real world, all E2EE
apps listed in Section 4 (that offer a mechanism for performing the
authentication ceremony) generate the fingerprint and represent
it as a human-readable code or an exchangeable object. Figure 5
in Appendix A.3 displays the common fingerprint representations
used by E2EE apps and described here:

5.2.1 QR Code The key fingerprint is encoded into a QR code
that can be automatically captured and compared by the E2EE app
without the need for end-user intervention. This method works
best when the authentication ceremony is performed in person and
the QR code is scanned in person. Only 5 E2EE apps analyzed in this
study (Element, Signal, Threema, WhatsApp, and Wickr) offer this
method to users who are located in close proximity to one another,
allowing them to perform the authentication ceremony in person.
Figure 5a in Appendix A.3 shows the QR code representation for
the Signal app.

5.2.2 Numeric Representation The key fingerprint is repre-
sented as a sequence of numerical digits to facilitate comparison
and verification. To make a long code more readable, this method
is organized as blocks (or chunks) of numbers with few digits. For
example, the WhatsApp app, shown in Figure 5b in Appendix A.3,
uses a 60-digit numeric string that is broken up into 12 blocks of
five-digit numbers. This method can be used either in person or
remotely to compare and verify the key fingerprint. It is useful
for people who are in distant locations and unlikely to meet in
person prior to communicating via an E2EE app. Only 6 E2EE apps
analyzed in this paper (Messages by Google, Signal, Skype, Viber,
WhatsApp, and Zoom) offer this method to their users, whether
they are nearby or remote. However, in the real world, only Sig-
nal and WhatsApp offer a feature for directly exchanging the key
fingerprint from the app over an OOB channel in remote communi-
cations. Other apps only rely on users to compare and verify the
key fingerprint over an OOB channel of their choice. Figure 5b in
Appendix A.3 shows theWhatsApp app’s numerical key fingerprint
and the share icon at the top-right corner of the phone’s screen,
which is used to directly exchange the key fingerprint from the
WhatsApp app over an OOB channel to perform the authentication
ceremony remotely.

5.2.3 Alphanumeric Representation For the purposes of com-
parison and verification, the key fingerprint is displayed both nu-
merically and alphabetically. This approach can be used to divide a
string of characters into equal-sized chunks, improving the text’s
readability. It can be used in hexadecimal, base32, or base64 for-
mat. Only 7 E2EE apps analyzed in this work (Facebook Messenger,
KakaoTalk, LINE, Telegram, Threema, Wickr, and Wire) offer this
method for comparing and verifying the key fingerprint, either in
person or remotely. In practice, all of the aforementioned E2EE apps
display the key fingerprint in hexadecimal characters (Figure 5c in
Appendix A.3 shows the hexadecimal representation for the Tele-
gram app), and none of them offer a feature to directly exchange the
key fingerprint within the app, with the exception of the Wickr app,
which displays the key fingerprint in base32 characters (as shown
in Figure 5d in Appendix A.3). Although the Base64 representation
has also been proposed in the literature, none of the E2EE apps we
analyze in this paper currently use it.

5.2.4 Graphical Representation The key fingerprint is encoded
into an image or a sequence of emojis for comparison and veri-
fication. This method can be used to replace textual fingerprint
representations and has been suggested to improve usability in the
prior literature. Only 3 E2EE apps analyzed in this study (Element,
KakaoTalk, and Telegram) offer this method for comparing and

193

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

verifying the key fingerprint, either in person or remotely. For ex-
ample, Figure 5e in Appendix A.3 depicts the image derived from
the encryption key for the KakaoTalk app. Also, Figure 5f in Ap-
pendix A.3 shows the emoji that the Element app uses to compare
and verify the key fingerprint.

5.2.5 Short Authentication String Only two E2EE apps ana-
lyzed in this work (Linphone and Silent Phone) use a SAS-based
verification mechanism (e.g., four characters or two words) instead
of alphanumeric or numeric representations to make comparison
and verification tasks during authentication ceremonies more read-
able. Figure 5g in Appendix A.3 shows the authentication ceremony
for the Linphone app, which uses a SAS code with four characters
to verify the user’s identity. Figure 5h in Appendix A.3 shows the
authentication ceremony for the Silent Phone app, which uses a
SAS code with two words to verify the user’s identity.

5.3 Supporting OOB Channels
Unfortunately, only 7 of the apps analyzed in this study (Linphone,
Signal, Silent Phone, Threema, Viber, WhatsApp, and Wickr) pro-
vide a feature for directly exchanging the key fingerprint from
inside the app using an OOB channel, e.g., a text message, email,
or phone call. These apps rely on users’ decisions to use another
trusted means of communication to compare and verify their key
fingerprints. Having such an OOB channel can facilitate authen-
tication ceremonies, especially for users who are not close to one
another. Additionally, some E2EE apps use numeric representations
and do not support OOB channels via which users can perform
the authentication ceremony. For example, Zoom uses numeric
representations for its E2EE meeting codes, but it does not support
OOB channels to perform the authentication ceremony manually
or even any automated verification process. Instead, the meeting
host can read the security code aloud, and therefore, users can com-
pare and verify that their clients display the same security code.
However, an adversary can sit and copy the meeting host’s voice
when announcing the string of digits 0-9 from previous meetings
and, thus, mount a voice-reordering attack to create any digits the
adversary wants and thus compromise the E2EE feature in a future
meeting [48].

5.4 E2EE Group Communications
In general, the security issues and usability obstacles of E2EE apps
in group scenarios are similar to those in the one-on-one scenarios.
In [26], the authors conducted a security analysis of Letter Sealing,
which is the E2EE scheme for LINE. They found that Letter Sealing
does not meet one of the fundamental security requirements of
E2EE, which is the integrity of the message. Their results demon-
strated the feasibility of attacks by exploiting several vulnerabilities
in LINE’s E2EE system. These attacks can be mounted by an end-
to-end adversary, a malicious group member, or a malicious user.
For instance, a malicious group member can mount impersonation
or forgery attacks on the group message encryption scheme by
exploiting the vulnerability of the key-derivation stage in group
message encryption.

(a) Facebook Messenger

(b) LINE

(c) Zoom

Figure 2: Authentication ceremonies in E2EE group scenarios

Most of the E2EE apps analyzed in this study support E2EE group
communications. However, participating in an authentication cere-
mony is not group-based authentication. It is pairwise authentica-
tion, which is similar to a one-to-one authenticated scheme, such
as the authentication ceremony for two parties. Therefore, having
a group with an enormous number of group members will make
the authentication ceremony hugely problematic and more chal-
lenging to perform. Like in one-to-one encrypted communication,
the group members in end-to-end encrypted group communica-
tions must perform an authentication ceremony to guarantee that
conversations between group members are confidential and authen-
ticated, thereby ensuring that there are no MitM attacks. In fact,
the vast majority of E2EE apps follow the same procedures for the
authentication ceremony in all one-to-one and group scenarios. For
instance, WhatsApp does not allow its users, when in a group chat,
to authenticate one another in a group-based manner; rather, it
relies on pairwise individual authentication. However, some other
E2EE apps vary in terms of their authentication ceremony settings
regarding presenting keys to their users during the authentication
ceremony while keeping the fingerprint verification pairwise. For
instance, the Facebook Messenger app (as shown in Figure 2a) uses
different terminology to refer to its group-authentication ceremony.
It lists all group members in a single list to help users find each
member’s device key, which may increase the usability of the au-
thentication ceremony in a group scenario. Another app (LINE in
Figure 2b) lists all group members with their keys in one list, which
could be helpful for group members in terms of participating in
the group authentication ceremony as well. On the other hand,
there is only one app (Zoom) in which the authentication ceremony

194

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Table 2: The Usability of the Authentication Ceremony in End-to-End Encrypted Applications

Application Terminology Used to Refer to
the Authentication Ceremony

Fingerprint
Representation

Authentication Ceremony to Enable
the Authenticated E2EE Mode

Group
Ceremony

Supporting
OOB Channels

Vulnerable to
Human Errors

Element
In 1-to-1 and group scenarios:

(Verify) One-time code

QR code,
On-screen emojis

(7 emojis)

Scan QR code,
Manually compare emojis

Pairwise Based
Authentication No Yes, since users manually

compare emojis.

Facebook
Messenger

In 1-to-1 scenario:
(Device keys),

In a group scenario:
(End-to-end encryption)

Device keys

66 hexadecimal characters
for each device Manually compare characters Pairwise Based

Authentication No Yes, since users manually
compare characters.

FaceTime N/A N/A N/A N/A N/A N/A
Google Meet N/A N/A N/A N/A N/A N/A

KakaoTalk
In 1-to-1 and group scenarios:

(Public Key)

Image,
32 hexadecimal characters

for each party

Manually compare
image or characters

Pairwise Based
Authentication No

Yes, since users manually
compare image
or characters.

LINE
In 1-to-1 and group scenarios:

(Encryption keys)
32 hexadecimal characters

for each party Manually compare characters Pairwise Based
Authentication No Yes, since users manually

compare characters.

Linphone
In 1-to-1 and group scenarios:

(Call the contact)
Communication security

SAS code of 4 characters Manually compare SAS
via audio call

Pairwise Based
Authentication Yes

Yes, since users manually
compare SAS
via audio call.

Messages
by Apple N/A N/A N/A N/A N/A N/A

Messages
by Google

In 1-to-1 scenario:
(Verify encryption)
Verification code

60-digit numeric Manually compare numbers N/A No Yes, since users manually
compare numbers.

Signal
In 1-to-1 and group scenarios:

(View Safety Number)
Verify Safety Number

QR code,
60-digit numeric

Scan QR code,
Manually compare numbers

Pairwise Based
Authentication Yes Yes, since users manually

compare numbers.

Silent Phone
In 1-to-1 and group scenarios:

(Call the contact)
Verify SAS

Two words Manually compare words
via audio call

Pairwise Based
Authentication Yes

Yes, since users manually
compare words
via audio call.

Skype
In 1-to-1 scenario:
(Security Code) 60-digit numeric Manually compare numbers N/A No Yes, since users manually

compare numbers.

Telegram
In 1-to-1 scenario:
(Encryption Key)

Image,
64 hexadecimal characters

Manually compare
image or characters N/A No

Yes, since users manually
compare image
or characters.

Threema
In 1-to-1 and group scenarios:

(Key Fingerprint)
QR code,

32 hexadecimal characters
Scan QR code,

Manually compare characters
Pairwise Based
Authentication Yes Yes, since users manually

compare characters.

Viber

In 1-to-1 and group scenarios:
Turn on (Trusted Contacts)

(Call your contact)
Verify secret identification key

48-digit numeric Manually compare numbers
via audio call

Pairwise Based
Authentication Yes

Yes, since users manually
compare numbers
via audio call.

WhatsApp
In 1-to-1 and group scenarios:

(Encryption)
Verify Security Code

QR code,
60-digit numeric

Scan QR code,
Manually compare numbers

Pairwise Based
Authentication Yes Yes, since users manually

compare numbers.

Wickr
In 1-to-1 and group scenarios:

(Security Verification)
Compare security code

QR code,
51 characters

using Base32 scheme

Scan QR code,
Manually compare characters

Pairwise Based
Authentication Yes Yes, since users manually

compare characters.

Wire
In 1-to-1 and group scenarios:

(Devices)
Verify device fingerprint

64 hexadecimal characters
for each device Manually compare characters Pairwise Based

Authentication No Yes, since users manually
compare characters.

Zoom
In 1-to-1 and group scenarios:

(Encryption)
Verify security code

40-digit numeric Manually compare numbers Group-based
Authentication No Yes, since users manually

compare numbers.

is group-based. The Zoom app, as shown in Figure 2c, uses only
one security code for its Zoom meeting setting to verify the se-
curity code for all Zoom meeting members in the current session.
Here, Zoom allows users to compare and verify a 40-digit number
represented as 8 blocks of five-digit numbers to verify the secure
connection of their Zoom session. Therefore, the meeting host may
read the security code aloud, and then all users can compare and
verify that their clients display the same security code.

6 DISCUSSION AND RECOMMENDATIONS
In this section, we will discuss and recommend some possible im-
provements for implementing E2EE functionality and authentica-
tion ceremonies in current E2EE apps. These recommendations are
based on the knowledge gained from our test scenarios. Also, it is
important to note that these recommendations should go through
testing before being deployed in E2EE apps.

Some E2EE apps analyzed in this study (Facebook Messenger,
KakaoTalk, Linphone, Skype, Telegram, and Zoom) do not imple-
ment the E2EE feature by default. Users will have to manually
turn on the E2EE feature to keep their conversations secure. This

may cause confusion for users unfamiliar with the E2EE scheme.
Abu-Salma et al. [2] investigated users’ experiences with various
communication tools and their perceptions of the tools’ security
features. They found that users sent sensitive information using
Telegram’s default chat, which is not E2EE. In practice, regular users
may feel misled by E2EE claims. Therefore, we suggest that any
application that purports to offer a secure E2EE messaging solution
should implement E2EE functionality by default rather than as an
opt-in feature. We also suggest that E2EE apps should ask their
users to perform the authentication ceremony as a primary task.
All E2EE apps analyzed in this work implement the E2EE feature
in an opportunistic E2EE mode, whether as a default or an opt-in
option. In practice, this opportunistic E2EE mode is susceptible to
active MitM attacks; hence, users must complete the authentication
ceremony to activate the authenticated E2EE mode. However, the
authentication ceremony is optional in all existing E2EE apps. This
might make active MitM attacks more difficult to detect, especially
for average users who are unaware of the security risks associated
with skipping or clicking through the authentication ceremony.

195

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

The performance of the authentication ceremony in current mes-
saging apps has been the focus of numerous published academic
studies. Due to usability flaws and human mistakes, it has been
proven that users cannot perform the authentication ceremony
and are hence vulnerable to MitM attacks. In a research study con-
ducted by Schröder et al. [47], the authors found that users failed to
complete the authentication ceremony in the Signal app and were
therefore susceptible to MitM attacks due to usability issues. In a
study by Vaziripour et al. [64], the authors investigated the ease
of locating and completing the authentication ceremony in What-
sApp, Viber, and Facebook Messenger. They found that, due to a
lack of security knowledge and various user interface design flaws,
participants struggled to locate and perform the authentication
ceremony. Furthermore, studies conducted by Herzberg et al. [21]
and Shirvanian et al. [50] investigated the usability of performing
the authentication ceremony in WhatsApp, Viber, Telegram, and
Signal and found that participants were vulnerable to MitM attacks.
In [21], the authors showed that the majority of participants failed
to authenticate even when they were shown how to authenticate.
In [50], the authors demonstrated that participants did not per-
form remote authentication ceremonies correctly due to usability
difficulties and human errors. To help users locate and find the
authentication ceremony, we suggest that E2EE apps should give
a notification message at the beginning of the conversation. This
message can help inform users about the importance of completing
the authentication ceremony to prevent MitM attacks. Also, we sug-
gest that E2EE apps should give users the possibility of navigating
to the authentication ceremony from the conversation interface if
they want to. This is because the primary task of the users in all cur-
rent E2EE apps is to pursue a conversation, and the authentication
ceremony is only an optional task. On the other hand, many but
not all E2EE apps analyzed in this study do not provide a feature for
directly exchanging the key fingerprint from inside the app using
an OOB channel, e.g., a text message or email. This feature can help
users complete the authentication ceremony, especially if they are
not nearby. Therefore, we think that all E2EE apps should have
this feature so that users can exchange their key fingerprints from
inside the app via an OOB channel.

Most of the E2EE apps mentioned in Section 4 still use numeric
or hexadecimal representations of fingerprints, even though many
studies have shown that other representations, like words and sen-
tences, are better at helping users detect attacks. Dechand et al. [9]
conducted a user study to investigate the performance and usabil-
ity of six textual key-fingerprint representations. They found that
participants were more resistant to attacks when using words and
sentences as compared to numeric or alphanumeric (Hexadecimal
and Base32) representations. The authors reported that the hexa-
decimal representation scheme fared considerably worse than other
representation schemes in terms of detecting attacks and usability
evaluations. Similarly, another work by Tan et al. [57] examined
the usability and security of eight textual and visual fingerprint
representations. They found that visual fingerprint representations
were more vulnerable to attacks than other methods, even though
they were easy to use and quick to process. In [64], the authors
investigated the authentication ceremony in WhatsApp, Viber and
Facebook Messenger. During this study, the authors observed that
many participants felt that the string of digits and the hexadecimal

string used for fingerprint representation were excessively long. In
addition, there are some studies that have found that E2EE phones
are susceptible to MitM attacks due to human errors. For example, a
study by Shirvanian et al. [49] examined the security and usability
of E2EE phones. The authors considered two words and four words
in the checksum-comparison and speaker-verification tasks. They
found that users were vulnerable to MitM attacks due to their fail-
ures in the checksum-comparison and speaker-verification tasks.
Furthermore, most contemporary E2EE apps use numeric represen-
tations in their authentication mechanisms, which users have com-
plained about, according to the research literature. Therefore, we
recommend that E2EE apps use textual and visual representations
that make the authentication process easier for users. However,
more research is needed to study the security vulnerabilities of
these representations.

7 CONCLUSION
In this paper, we examined the most popular E2EE apps, including
their underlying E2EE messaging protocols and authentication cer-
emonies. Even though the authentication ceremony plays a vital
role in helping to thwart active MitM attacks, a few E2EE apps do
not offer any authentication ceremony to their users. We found
that the current implementations of the E2EE feature in various
E2EE apps, particularly in the opportunistic E2EE mode, can defeat
a passive MitM attacker but cannot defeat an active MitM attacker.
We also found that their actual implementations of the E2EE feature
in authenticated E2EE mode depend crucially on users to success-
fully perform and complete authentication ceremonies. However,
several studies have shown that users are unable to successfully
perform and complete the authentication ceremony and, therefore,
become vulnerable to activeMitM attacks due to usability issues and
human errors. This systematization reveals avenues that require
further investigation. First, further research is needed to automate
the authentication ceremony or implement a semi-automated au-
thentication ceremony to reduce the effort on the part of the user
when performing the authentication ceremony. Additionally, more
research is needed to extend studies to the context of group com-
munication. Most research studies focus only on two-party E2EE
but having more than two parties will make the authentication
ceremony more challenging to perform. Lastly, new research can be
focused on running the E2EE protocol over the audio channel only.
Most research studies focus only on phones, which always have
two channels (a data channel and an audio channel). Therefore,
new research is needed to demonstrate how to establish this E2EE
protocol on line phones, which have only audio channels.

ACKNOWLEDGMENTS
Wewould like to give special thanks to our shepherd and the anony-
mous reviewers for their valuable feedback on this paper.

REFERENCES
[1] Ruba Abu-Salma, Kat Krol, Simon Parkin, Victoria Koh, Kevin Kwan, Jazib Mah-

boob, Zahra Traboulsi, and M Angela Sasse. 2017. The Security Blanket of the
Chat World: An Analytic Evaluation and a User Study of Telegram. Internet
Society. https://doi.org/10.14722/eurousec.2017.23006

[2] Ruba Abu-Salma, M. Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena
Naiakshina, and Matthew Smith. 2017. Obstacles to the Adoption of Secure
Communication Tools. In 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 137–153. https://doi.org/10.1109/SP.2017.65

196

https://doi.org/10.14722/eurousec.2017.23006
https://doi.org/10.1109/SP.2017.65

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

[3] Dieter Bohn. 2020. Google is rolling out end-to-end encryption for RCS in Android
Messages beta. Retrieved July 11, 2022 from https://www.theverge.com/2020/11/
19/21574451/android-rcs-encryption-message-end-to-end-beta

[4] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-Record Communica-
tion, or, Why Not to Use PGP. In Proceedings of the 2004 ACMWorkshop on Privacy
in the Electronic Society (WPES ’04). Association for Computing Machinery, New
York, NY, USA, 77–84. https://doi.org/10.1145/1029179.1029200

[5] Pew Research Center. 2017. Most Americans think the government could be
monitoring their phone calls and emails. Retrieved July 03, 2022 from https:
//pewrsr.ch/3nI8hIf

[6] Don Clark. 2015. Microsoft to Alert Users to Suspected Government Snooping.
Retrieved July 03, 2022 from https://www.wsj.com/articles/microsoft-to-alert-
users-to-suspected-government-snooping-1451528624

[7] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. 2020. A formal security analysis of the signal messaging protocol.
Journal of Cryptology 33, 4 (2020), 1914–1983. https://doi.org/10.1007/s00145-
020-09360-1

[8] LINE Corporation. 2021. LINE Encryption Overview. Retrieved Au-
gust 17, 2022 from https://d.line-scdn.net/stf/linecorp/en/csr/line-encryption-
whitepaper-ver2.1.pdf

[9] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl,
and Matthew Smith. 2016. An Empirical Study of Textual Key-Fingerprint Repre-
sentations. In Proceedings of the 25th USENIX Conference on Security Symposium
(SEC’16). USENIX Association, USA, 193–208.

[10] Kitty Donaldson and Mark Burton. 2019. Facebook, WhatsApp Will
Have to Share Messages With U.K. Retrieved July 03, 2022 from
https://www.bloomberg.com/news/articles/2019-09-28/facebook-whatsapp-
will-have-to-share-messages-with-u-k-police

[11] Element 2022. https://element.io/.
[12] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. 2016. End-to-End

Encrypted Messaging Protocols: An Overview. In International Conference on
Internet Science. Springer, 244–254. https://doi.org/10.1007/978-3-319-45982-0_22

[13] Facebook. 2017. Messenger Secret Conversations. Technical Whitepaper. Retrieved
July 18, 2022 from https://about.fb.com/wp-content/uploads/2016/07/messenger-
secret-conversations-technical-whitepaper.pdf

[14] Facebook Messenger 2022. https://www.messenger.com/.
[15] FaceTime 2022. https://support.apple.com/en-us/HT204380.
[16] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg

Schwenk, and Thorsten Holz. 2016. How Secure is TextSecure?. In 2016 IEEE
European Symposium on Security and Privacy (EuroSP). IEEE, 457–472. https:
//doi.org/10.1109/EuroSP.2016.41

[17] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael
Rushanan. 2016. Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks
on Apple Imessage. In Proceedings of the 25th USENIX Conference on Security
Symposium (SEC’16). USENIX Association, USA, 655–672.

[18] Wire Swiss GmbH. 2021. Wire Security Whitepaper. Retrieved August 20, 2022
from https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf

[19] Google. 2022. Messages End-to-End Encryption Overview. Retrieved July 18, 2022
from https://www.gstatic.com/messages/papers/messages_e2ee.pdf

[20] Google Meet 2022. https://apps.google.com/meet/.
[21] Amir Herzberg and Hemi Leibowitz. 2016. Can Johnny Finally Encrypt? Eval-

uating E2E-Encryption in Popular IM Applications. In Proceedings of the 6th
Workshop on Socio-Technical Aspects in Security and Trust (STAST ’16). Associa-
tion for Computing Machinery, New York, NY, USA, 17–28. https://doi.org/10.
1145/3046055.3046059

[22] Amir Herzberg, Hemi Leibowitz, Kent Seamons, Elham Vaziripour, Justin Wu,
and Daniel Zappala. 2021. Secure Messaging Authentication Ceremonies Are
Broken. IEEE Security & Privacy 19, 2 (2021), 29–37. https://doi.org/10.1109/
MSEC.2020.3039727

[23] Chris Howell, Tom Leavy, and Joël Alwen. 2017. Wickr Messaging Protocol.
TECHNICAL PAPER. Retrieved August 04, 2022 from https://wickr.com/wp-
content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf

[24] Apple Inc. 2021. Apple Platform Security. iMessage security overview. Retrieved
July 27, 2022 from https://support.apple.com/guide/security/imessage-security-
overview-secd9764312f/web

[25] Apple Inc. 2022. Apple Platform Security. FaceTime security. Retrieved July 27, 2022
from https://support.apple.com/guide/security/facetime-security-seca331c55cd/
web

[26] Takanori Isobe and Kazuhiko Minematsu. 2018. Breaking Message Integrity of
an End-to-End Encryption Scheme of LINE. In European Symposium on Research
in Computer Security, Javier Lopez, Jianying Zhou, and Miguel Soriano (Eds.).
Springer, Springer International Publishing, Cham, 249–268. https://doi.org/10.
1007/978-3-319-98989-1_13

[27] KakaoTalk 2022. https://www.kakaocorp.com/service/KakaoTalk?lang=en.
[28] Hugo Krawczyk. 2003. SIGMA: The ‘SIGn-and-MAc’approach to authenticated

Diffie-Hellman and its use in the IKE protocols. InAnnual International Cryptology
Conference. Springer, 400–425. https://doi.org/10.1007/978-3-540-45146-4_24

[29] Max Krohn. 2020. Zoom Rolling Out End-to-End Encryption Offering. Re-
trieved July 11, 2022 from https://blog.zoom.us/zoom-rolling-out-end-to-end-
encryption-offering/

[30] Max Krohn. 2022. End-to-End Encryption Expands to Zoom Phone and Break-
out Rooms. Retrieved August 11, 2022 from https://blog.zoom.us/end-to-end-
encryption-zoom-phone-breakout-rooms/

[31] Adam Langley. 2009. Opportunistic encryption everywhere. In W2SP (2009).
[32] Line 2022. https://line.me/en/.
[33] Linphone 2020. https://www.linphone.org/.
[34] Linphone. 2020. LIME. Retrieved August 17, 2022 from https://www.linphone.

org/technical-corner/lime
[35] MARY MADDEN. 2014. Public Perceptions of Privacy and Security in the Post-

Snowden Era. Retrieved July 03, 2022 from https://www.pewresearch.org/
internet/2014/11/12/public-privacy-perceptions/

[36] Moxie Marlinspike. 2013. Advanced cryptographic ratcheting. Retrieved July 11,
2022 from https://signal.org/blog/advanced-ratcheting/

[37] Moxie Marlinspike and Trevor Perrin. 2016. The x3dh key agreement protocol.
Open Whisper Systems (2016).

[38] Matrix 2022. https://matrix.org/.
[39] Messages by Apple 2022. https://support.apple.com/explore/messages.
[40] Messages by Google 2022. https://messages.google.com/.
[41] Microsoft. 2018. Skype Private Conversation. Technical white paper. Retrieved

July 21, 2022 from https://az705183.vo.msecnd.net/onlinesupportmedia/
onlinesupport/media/skype/documents/skype-private-conversation-white-
paper.pdf

[42] Emad Omara. 2020. Google Duo End-to-End Encryption Overview. Retrieved July
18, 2022 from https://www.gstatic.com/duo/papers/duo_e2ee.pdf

[43] Trevor Perrin andMoxie Marlinspike. 2016. The double ratchet algorithm. GitHub
wiki (2016).

[44] Pidgin 2020. https://pidgin.im/.
[45] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. 2005. Secure Off-

the-Record Messaging. In Proceedings of the 2005 ACM Workshop on Privacy in
the Electronic Society (WPES ’05). Association for Computing Machinery, New
York, NY, USA, 81–89. https://doi.org/10.1145/1102199.1102216

[46] Dawin Schmidt. 2016. A security and privacy audit of KakaoTalk’s end-to-end
encryption. Master’s thesis.

[47] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner. 2016.
When SIGNAL hits the Fan: On the Usability and Security of State-of-the-Art
Secure Mobile Messaging. In European Workshop on Usable Security. IEEE. 1–7.
https://doi.org/10.14722/eurousec.2016.23012

[48] Maliheh Shirvanian and Nitesh Saxena. 2014. Wiretapping via Mimicry: Short
Voice Imitation Man-in-the-Middle Attacks on Crypto Phones. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 868–879.
https://doi.org/10.1145/2660267.2660274

[49] Maliheh Shirvanian and Nitesh Saxena. 2015. On the Security and Usability of
Crypto Phones. In Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC ’15). Association for Computing Machinery, New York, NY,
USA, 21–30. https://doi.org/10.1145/2818000.2818007

[50] Maliheh Shirvanian, Nitesh Saxena, and Jesvin James George. 2017. On the Pitfalls
of End-to-End Encrypted Communications: A Study of Remote Key-Fingerprint
Verification. In Proceedings of the 33rd Annual Computer Security Applications
Conference (ACSAC ’17). Association for Computing Machinery, New York, NY,
USA, 499–511. https://doi.org/10.1145/3134600.3134610

[51] Signal 2022. https://signal.org/.
[52] Signal. 2022. Technical information. Retrieved July 21, 2022 from https://signal.

org/docs/
[53] Silent Phone 2022. https://www.silentcircle.com/products-and-solutions/silent-

phone/.
[54] Skype 2022. https://www.skype.com/en/.
[55] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. 2008. A User Study of Off-the-

Record Messaging. In Proceedings of the 4th Symposium on Usable Privacy and
Security (SOUPS ’08). Association for Computing Machinery, New York, NY, USA,
95–104. https://doi.org/10.1145/1408664.1408678

[56] Paul Szoldra. 2016. This is everything Edward Snowden revealed in one year
of unprecedented top-secret leaks. Retrieved July 03, 2022 from https://www.
businessinsider.com/snowden-leaks-timeline-2016-9

[57] Joshua Tan, Lujo Bauer, Joseph Bonneau, Lorrie Faith Cranor, Jeremy Thomas,
and Blase Ur. 2017. Can Unicorns Help Users Compare Crypto Key Fingerprints?.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 3787–3798.
https://doi.org/10.1145/3025453.3025733

[58] Telegram 2022. https://telegram.org/.
[59] Telegram. 2022. End-to-End Encryption, Secret Chats. Retrieved August 04, 2022

from https://core.telegram.org/api/end-to-end
[60] Threema 2022. https://threema.ch/en.
[61] Threema. 2022. Cryptography Whitepaper. Retrieved December 24, 2022 from

https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf

197

https://www.theverge.com/2020/11/19/21574451/android-rcs-encryption-message-end-to-end-beta
https://www.theverge.com/2020/11/19/21574451/android-rcs-encryption-message-end-to-end-beta
https://doi.org/10.1145/1029179.1029200
https://pewrsr.ch/3nI8hIf
https://pewrsr.ch/3nI8hIf
https://www.wsj.com/articles/microsoft-to-alert-users-to-suspected-government-snooping-1451528624
https://www.wsj.com/articles/microsoft-to-alert-users-to-suspected-government-snooping-1451528624
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1
https://d.line-scdn.net/stf/linecorp/en/csr/line-encryption-whitepaper-ver2.1.pdf
https://d.line-scdn.net/stf/linecorp/en/csr/line-encryption-whitepaper-ver2.1.pdf
https://www.bloomberg.com/news/articles/2019-09-28/facebook-whatsapp-will-have-to-share-messages-with-u-k-police
https://www.bloomberg.com/news/articles/2019-09-28/facebook-whatsapp-will-have-to-share-messages-with-u-k-police
https://doi.org/10.1007/978-3-319-45982-0_22
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://doi.org/10.1109/EuroSP.2016.41
https://doi.org/10.1109/EuroSP.2016.41
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://doi.org/10.1145/3046055.3046059
https://doi.org/10.1145/3046055.3046059
https://doi.org/10.1109/MSEC.2020.3039727
https://doi.org/10.1109/MSEC.2020.3039727
https://wickr.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://wickr.com/wp-content/uploads/2019/12/WhitePaper_WickrMessagingProtocol.pdf
https://support.apple.com/guide/security/imessage-security-overview-secd9764312f/web
https://support.apple.com/guide/security/imessage-security-overview-secd9764312f/web
https://support.apple.com/guide/security/facetime-security-seca331c55cd/web
https://support.apple.com/guide/security/facetime-security-seca331c55cd/web
https://doi.org/10.1007/978-3-319-98989-1_13
https://doi.org/10.1007/978-3-319-98989-1_13
https://doi.org/10.1007/978-3-540-45146-4_24
https://blog.zoom.us/zoom-rolling-out-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-rolling-out-end-to-end-encryption-offering/
https://blog.zoom.us/end-to-end-encryption-zoom-phone-breakout-rooms/
https://blog.zoom.us/end-to-end-encryption-zoom-phone-breakout-rooms/
https://www.linphone.org/technical-corner/lime
https://www.linphone.org/technical-corner/lime
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://signal.org/blog/advanced-ratcheting/
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://www.gstatic.com/duo/papers/duo_e2ee.pdf
https://doi.org/10.1145/1102199.1102216
https://doi.org/10.14722/eurousec.2016.23012
https://doi.org/10.1145/2660267.2660274
https://doi.org/10.1145/2818000.2818007
https://doi.org/10.1145/3134600.3134610
https://signal.org/docs/
https://signal.org/docs/
https://doi.org/10.1145/1408664.1408678
https://www.businessinsider.com/snowden-leaks-timeline-2016-9
https://www.businessinsider.com/snowden-leaks-timeline-2016-9
https://doi.org/10.1145/3025453.3025733
https://core.telegram.org/api/end-to-end
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

[62] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-
berg, and Matthew Smith. 2015. SoK: Secure Messaging. In 2015 IEEE Symposium
on Security and Privacy. IEEE, 232–249. https://doi.org/10.1109/SP.2015.22

[63] Serge Vaudenay. 2005. Secure Communications over Insecure Channels Based
on Short Authenticated Strings. In Annual International Cryptology Conference.
Springer, 309–326. https://doi.org/10.1007/11535218_19

[64] Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, JordanWhitehead, Scott
Heidbrink, Kent Seamons, and Daniel Zappala. 2017. Is That You, Alice? A Us-
ability Study of the Authentication Ceremony of Secure Messaging Applications.
In Proceedings of the Thirteenth USENIX Conference on Usable Privacy and Security
(SOUPS ’17). USENIX Association, USA, 29–47.

[65] Sebastian R. Verschoor and Tanja Lange. 2016. (In-)Secure messaging with the
Silent Circle instant messaging protocol. Cryptology ePrint Archive, Paper
2016/703. https://eprint.iacr.org/2016/703

[66] Viber 2022. https://www.viber.com/en/.
[67] Rakuten Viber. 2022. Viber Encryption Overview. Retrieved July 21, 2022 from

https://www.viber.com/app/uploads/viber-encryption-overview.pdf
[68] WhatsApp. 2021. WhatsApp Encryption Overview. Technical white paper.

Retrieved July 21, 2022 from https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-
6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&
ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=
scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-
XdIkabxGPA&oe=63DDCC24

[69] WhatsApp 2022. https://www.whatsapp.com/.
[70] Wickr 2022. https://wickr.com/.
[71] Wire 2022. https://wire.com/en/.
[72] Ruishan Zhang, Xinyuan Wang, Ryan Farley, Xiaohui Yang, and Xuxian Jiang.

2009. On the Feasibility of Launching the Man-in-the-Middle Attacks on VoIP
from Remote Attackers. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security (ASIACCS ’09). Association
for Computing Machinery, New York, NY, USA, 61–69. https://doi.org/10.1145/
1533057.1533069

[73] Phil Zimmermann, Alan Johnston, and Jon Callas. 2011. ZRTP: Media path key
agreement for unicast secure RTP. Internet Engineering Task Force (IETF) (2011),
2070–1721.

[74] Zoom 2022. https://zoom.us/.
[75] Zoom. 2022. Zoom End-to-End Encryption Whitepaper. Retrieved August 04, 2022

from https://github.com/zoom/zoom-e2e-whitepaper

A APPENDIX
A.1 Additional E2EE Applications Using the

Signal Protocol
A.1.1 Google Meet It is an app developed by Google for video
meetings and calls [20]. Google has upgraded the Google Duo app
and merged it into the Google Meet app to include both video
calling and meetings in one app. Therefore, the Google Meet app
claims to provide an E2EE feature in one-to-one and group video
calling using Google Duo’s end-to-end encryption [42]. The Google
Meet app uses the Signal protocol to implement the E2EE protocol.
It uses E2EE mode by default for all voice and video messages
and calls in all one-to-one and group conversations. In one-to-one
calls, the Google Meet app uses WebRTC which supports E2EE
for individual calls utilizing DTLS-SRTP. Datagram transport layer
security (DTLS) is used to establish a secure connection between the
two participants in the call, whereas SRTP is used to provide real-
time and encrypted media streams. On the other hand, meetings
in the Google Meet app are not end-to-end encrypted. Instead of
E2EE, the Google Meet app uses cloud encryption for its meetings.

A.1.2 Messages by Google It is an app developed by Google
to send messages using Short Message Service (SMS)/Multimedia
Messaging Service (MMS) and chat with RCS [40]. Google provides
RCS chat services via its Android Messages app. Recently, Google
began rolling out the E2EE feature for RCS in the Android Mes-
sages app [3]. The Google Messages app uses the Signal protocol to
implement the E2EE feature for RCS messages [19]. Google is only

offering the E2EE feature on one-to-one chats by default if both
participants in the conversation are using the Google Messages app.
However, to utilize the E2EE feature in the Google Messages app,
both the sender and the receiver must use the Google Messages app
on their phone devices, have chat features enabled, and use data or
Wi-Fi for RCS messages.

A.1.3 Skype It is an IM and VoIP app [54]. Using the Signal pro-
tocol, it implements the E2EE feature as an optional property [41].
Therefore, all Skype messages and calls are not E2EE by default.
Users can protect their audio calls or messages by turning on an
option called Private Conversation, which supports an E2EE scheme
based on the Signal protocol. This option only supports the E2EE
feature in chats and audio calls between two users. There is no E2EE
protection for either a video call or a group scenario. In one-to-one
audio calls, the Skype app uses an existing Private Conversation
session between two users to generate an encryption key and initi-
ate an E2EE audio call. After the E2EE audio call is set up, media
packets are encrypted with SRTP using the previously generated
encryption key.

A.2 Additional E2EE Applications Using
Proprietary Protocols

A.2.1 Element It is an IM app and an independent communica-
tion system connected via Matrix [11]. The Element app is built on
top of the Matrix protocol and uses the encryption implemented
within the Matrix open standard [38]. In all one-to-one and group
chats and calls, the Element app uses the Olm encryption library,
which is based on the Double Ratchet protocol popularized by Sig-
nal, to implement the E2EE feature by default.

A.2.2 FaceTime It is a video and audio calling service devel-
oped by the Apple company [15]. The Apple company claims that
the audio and video content of FaceTime calls is encrypted E2EE
by default in all one-to-one and group scenarios. FaceTime uses
the Apple Push Notification service (APNs) to establish the first
connection point to the user’s registered devices [25]. This first
connection point is made via an Apple server infrastructure that
transmits data packets between the users’ registered devices. Users’
registered devices verify their identity certificates and establish a
shared secret for each session by using APNs and Session Traversal
Utilities for NAT (STUN) messages through the relayed connection.
By using SRTP, the shared secret is used to obtain session keys for
the streamed media channels.

A.2.3 KakaoTalk It is an IM app created by the Kakao company
in South Korea [27]. It allows users to implement E2EE function-
ality as an opt-in feature. Therefore, the KakaoTalk app does not
enable the E2EE feature by default, and users must select an option
called Secret Chat to chat in an E2EE manner. The E2EE feature
was added to the KakaoTalk app on top of its LOCO Messaging
Protocol [46]. The LOCO E2EE messaging protocol uses Transport
Layer Security (TLS), a central public-key directory server, the AES
encryption algorithm, and the RSA key-pair. When using the Secret
Chat feature, all messages are E2EE in one-to-one and group chat
rooms. However, audio and video calls are not available when using
the Secret Chat feature.

198

https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1007/11535218_19
https://eprint.iacr.org/2016/703
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-XdIkabxGPA&oe=63DDCC24
https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-XdIkabxGPA&oe=63DDCC24
https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-XdIkabxGPA&oe=63DDCC24
https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-XdIkabxGPA&oe=63DDCC24
https://scontent-iad3-1.xx.fbcdn.net/v/t39.8562-6/326130579_868561330899040_2694856431949694281_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=ae5e01&_nc_ohc=GiHwGuhmURAAX_u-okb&_nc_ht=scontent-iad3-1.xx&oh=00_AfDBUqimHHncuLDOeqED0EJOAeSSwksocCW-XdIkabxGPA&oe=63DDCC24
https://doi.org/10.1145/1533057.1533069
https://doi.org/10.1145/1533057.1533069
https://github.com/zoom/zoom-e2e-whitepaper

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

A.2.4 LINE It is an IM app that is popular in East Asia [32]. It
implements E2EE functionality by default under a security feature
called Letter Sealing [8]. Therefore, the Letter Sealing feature is
turned on by default for all text messages, location information,
voice calls, and video calls between two users in one-to-one scenar-
ios. However, only text messages and location information are E2EE
by default on group chats. The LINE app does not support E2EE
voice or video calls in group scenarios. To implement the E2EE
feature, the LINE app uses the elliptic curve Diffie-Hellman (ECDH)
protocol over Curve25519 and AES-256 in GCM mode. However, in
one-to-one voice and video calls, the LINE app utilizes the curve
secp256r1 for the VoIP encryption protocol, AES for symmetric
encryption, and HKDF for deriving symmetric keys.

A.2.5 Linphone It is an audio and video calling app that supports
IM [33]. It implements E2EE functionality as an opt-in feature for
one-to-one and group messages, as well as for audio and video calls.
In order to implement E2EE in one-to-one and group IM features,
the Linphone app uses its own E2EE protocol called Linphone
instant message encryption (LIME) [34]. This LIME protocol is
inspired by the Signal protocol, allowing users to send and receive
messages privately and asynchronously. On the other hand, the
Linphone app implements the E2EE feature for one-to-one audio
and video calls using ZRTP and SRTP-DTLS, which are compatible
with WebRTC. However, the E2EE feature is not available for voice
or video calls in group scenarios.

A.2.6 Messages by Apple It is an IM app developed by the
Apple company to send messages with iMessage and SMS/MMS
[39]. The Apple Messages app utilizes the iMessage protocol to
implement the E2EE feature by default in all one-to-one and group
scenarios [24]. After switching on iMessage on a device, the device
generates encryption and signing pairs of keys for use with the
service. The Apple iMessage protocol uses an encryption RSA 1,280-
bit key and an encryption EC 256-bit key on the NIST P-256 curve
for the encryption, whereas with the elliptic curve digital signature
algorithm (ECDSA), 256-bit signing keys are used for the signatures.
It also uses Apple Identity Service (IDS) to store public keys and
maintain the mapping between them and the user’s phone number
or email address, along with the device’s APNs address, whereas
private keys are saved in the device’s keychain. The APNs are then
used to deliver the encrypted message text, the encrypted message
key, and the sender’s digital signature.

A.2.7 Silent Phone It is an IM and VoIP app developed by Silent
Circle [53]. It claims that all messages and calls are E2EE by default
in all one-to-one and group scenarios. It uses its own protocol, based
on the Signal protocol, to implement E2EE in IM features [65]. On
the other hand, ZRTP is used to implement the E2EE feature in
audio and video calls [73]. ZRTP uses Diffie-Hellman key exchange
and SRTP to establish a shared session key and encrypt data.

A.2.8 Threema It is an IM app that also allows users to make
voice and video calls [60]. It claims that all messages and calls
are E2EE by default in all one-to-one and group scenarios. It uses
its own protocol to implement the E2EE feature in messages and
calls [61]. When the Threema application is installed on a user’s
phone device, it generates, for each user, a unique asymmetric key
pair consisting of a public key and a private key based on elliptic

curve cryptography. The Threema app uses the ECDH protocol to
establish a shared secret. It then uses the XSalsa20 stream cipher
to encrypt the plaintext, whereas a message authentication code
(MAC) is computed by Poly1305-AES. In Threema calls, WebRTC is
used to establish a secure peer-to-peer (P2P) connection. The audio
stream is encrypted with the SRTP protocol, and the key exchange
is done with the DTLS-SRTP protocol.

A.2.9 Wickr Wickr [70] has developed the Wickr Me app and
the Wickr Pro app for individual and business uses, respectively.
To provide the E2EE feature, Wickr uses its own protocol called
the Wickr secure messaging protocol, which is based on standard
cryptographic primitives [23]. It uses ECDH key exchange with
P521 key pairs, ECDSA with P521 key pairs, AES 256 in GCMmode,
and KDF. All messages and audio/video calls are E2EE by default in
all one-to-one and group scenarios. Once Wickr generates keys for
users and their first devices, it stores public keys and root identifiers
on Wickr servers.

A.2.10 Wire It is an IM and VoIP app created by the Wire Swiss
GmbH company [71]. It claims that all messages and calls are E2EE
by default in all one-to-one and group scenarios. Wire uses the Pro-
teus protocol to implement the E2EE feature, which copies some
features of the Signal protocol [18]. However, the Proteus proto-
col has been customized as an independent implementation of the
Signal protocol. The Proteus protocol uses the following crypto-
graphic primitives: the ChaCha20 stream cipher, HMAC-SHA256
as MAC, ECDH key exchange, and HKDF for key derivation. In
Wire calls, the call media session is encrypted by the SRTP protocol,
whereas the DTLS handshake is used to negotiate the SRTP encryp-
tion algorithm, keys, and parameters. Once a client generates the
key material, the client uploads pre-keys bundled with its public
identity key to a Wire server, which can be used by other clients to
asynchronously initiate an E2EE conversation.

A.3 Additional Tables and Figures

Table 3: End-to-End Encrypted Applications Rating and Reviews on Google
Play Store

Application Installs on
Google Play Rating Reviews

WhatsApp 5,000,000,000+ 4.3 172,000,000
Facebook
Messenger 5,000,000,000+ 4.1 85,900,000

Google Meet 5,000,000,000+ 4.6 9,810,000
Viber 1,000,000,000+ 4.5 16,200,000

Telegram 1,000,000,000+ 4.3 11,800,000
Skype 1,000,000,000+ 4.1 11,500,000

Messages
by Google 1,000,000,000+ 4.2 9,150,000

LINE 500,000,000+ 4.1 13,700,000
Zoom 500,000,000+ 4.2 3,980,000

KakaoTalk 100,000,000+ 4.3 3,160,000
Signal 100,000,000+ 4.4 2,190,000

Wickr Me 10,000,000+ 4.8 89,000
Threema 1,000,000+ 4.1 70,800
Wire 1,000,000+ 2.9 35,100

Linphone 500,000+ 3.8 5,350
Element 500,000+ 4.1 4,570

Silent Phone 500,000+ 3.8 1,830

199

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Mashari Alatawi & Nitesh Saxena

(a) Telegram

(b) WhatsApp
(c) Viber (d) Skype

Figure 3: Alerting users that the opportunistic E2EE mode is turned on and their messages are end-to-end encrypted by using different indicators, such as special
notification messages and lock icons.

(a) Signal
(b) KakaoTalk

(c) Skype

(d) Telegram

(e) Facebook Messenger

Figure 4: Some E2EE applications refer to the authentication ceremony using the terminology shown above.

200

SoK: An Analysis of End-to-End Encryption and Authentication Ceremonies in Secure Messaging Systems WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

(a) Signal

(b) WhatsApp (c) Telegram
(d) Wickr

(e) KakaoTalk

(f) Element (g) Linphone

(h) Silent Phone

Figure 5: Fingerprint representations in E2EE applications

201

	Abstract
	1 Introduction
	2 Background
	2.1 State-of-the-Art End-to-End Encryption
	2.2 Properties for Secure Messaging Systems
	2.3 Threat Model
	2.4 End-to-End Encrypted Messaging Protocols
	2.5 Related Work

	3 Systematization Methodology
	4 Analysis of E2EE Applications
	4.1 E2EE Apps Using the Signal Protocol
	4.2 E2EE Apps Using Proprietary Protocols
	4.3 The Opacity of E2EE Applications

	5 Analysis of the Authentication Ceremony
	5.1 Finding and Performing the Ceremony
	5.2 Fingerprint Representations
	5.3 Supporting OOB Channels
	5.4 E2EE Group Communications

	6 Discussion and Recommendations
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Additional E2EE Applications Using the Signal Protocol
	A.2 Additional E2EE Applications Using Proprietary Protocols
	A.3 Additional Tables and Figures

