
Breaking Mobile Notification-based Authentication
with Concurrent Attacks Outside of Mobile Devices
Ahmed Tanvir Mahdad

mahdad@tamu.edu
Texas A&M University

College Station, Texas, USA

Mohammed Jubur∗
mjabour@jazanu.edu.sa

Jazan University
Jazan, Saudi Arabia

Nitesh Saxena
nsaxena@tamu.edu

Texas A&M University
College Station, Texas, USA

ABSTRACT
Notification-based authentication is an emerging Two-Factor
Authentication (2FA) and passwordless solution that lever-
ages interactive notifications on mobile devices to estab-
lish an additional layer of security beyond passwords. This
method has gained popularity due to its convenience and
ease of deployment in organizational settings. In this work,
we aim to evaluate the effectiveness of notification-based
authentication systems when a malicious entity is present
on the user’s computer, such as a keylogger or malicious
extension, without compromising the mobile devices or com-
munication channels. Furthermore, we investigate how the
lack of information provided to users during the authentica-
tion workflow can lead to the approval of malicious authen-
tication requests. Notably, we highlight the vulnerability of
cross-service attacks, where an attacker authenticates to Ser-
vice B while the user is attempting to authenticate to Service
A. Our proof-of-concept attack program demonstrates the
susceptibility of various notification-based authentication
systems, and our user study reveals an alarming 82.2% cross-
service attack success rate. These findings suggest a potential
vulnerability in notification-based authentication systems,
where the attacker compromise user account without com-
promising possession-factor device, such as smartphones.

CCS CONCEPTS
• Security and privacy→ Multi-factor authentication.

∗Work done as a PhD student in the SPIES Lab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10.
https://doi.org/10.1145/3570361.3613273

KEYWORDS
2FA, MFA, Notification, Authentication, Security

ACM Reference Format:
Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena. 2023.
Breaking Mobile Notification-based Authentication with Concur-
rent Attacks Outside of Mobile Devices. In The 29th Annual Inter-
national Conference on Mobile Computing and Networking (ACM
MobiCom ’23), October 2–6, 2023, Madrid, Spain. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3570361.3613273

1 INTRODUCTION
Authentication systems deployed in the wild rely primarily
on passwords as the primary means of knowledge-based au-
thentication. However, password-only systems are known to
have vulnerabilities [17, 34] and usability issues [7, 33]. One
drawback of these systems is the need for users to remember
multiple passwords for various services, which can cause sig-
nificant cognitive burden [25]. This burden may lead users to
reuse the same password across multiple sites, increasing the
risk of compromising high-value accounts, such as banking
or credit card accounts. If a password is stolen from a low-
value account that does not contain sensitive personal or
financial information, high-value accounts where the same
password is reused can also be at risk [11].
To counter this issue and other known vulnerabilities,

Two-Factor Authentication (2FA) has been introduced which
uses an additional authentication factor (such as possession
or inherence) along with passwords to provide an extra layer
of security in case of password theft or compromise. Among
the deployed 2FA systems, One Time Pin (OTP) is a popu-
lar 2FA system that is also known for causing security and
usability issues. More recently, notification-based 2FA sys-
tems are introduced as a more usable yet supposedly secure
alternative to prove the smartphone’s possession in 2FA.

In notification-based 2FA, service providers communicate
with the users with interactive notifications (i.e., those that
can be approved or denied) through smartphones which
are assumed to be secure. The communication channel is
believed to be protected, and a very low cognitive burden is
imposed on the user. As a result, notification-based 2FA (e.g.,
Duo) has become increasingly popular and has already been
trusted by many organizations. This method has also been

888

https://doi.org/10.1145/3570361.3613273
https://doi.org/10.1145/3570361.3613273
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570361.3613273&domain=pdf&date_stamp=2023-10-02


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

used in passwordless authentication systems, in conjunction
with inherence factors such as fingerprints. According to
prior research [29], push notification authentication has been
found to achieve a high usability score when compared to
other two-factor authentication (2FA) methods. Additionally,
users tend to perceive push notifications as user-friendly and
effective in bolstering account security [10].

Service providers collect users’ consent for authentication
through notifications using two methods. The first involves
generating a phone call to the user’s pre-registered number,
which the user must answer and press a button to approve
the notification. The second method involves sending a push
notification to the user’s registered smartphone, which they
can approve or deny by tapping a button from the notification
bar or within the notification details. We refer to the authen-
tication system that uses notifications on smartphones or
wearable devices in their workflow as Push-2FA in this paper.
We also denote the Push-2FA variant that uses only approve
or deny button in the notification or phone call, as confirm.

Terminal verification requires users to verify the binding
between the login session on the terminal/browser and the
notification on the 2FA device by matching unique identifiers
(i.e., a randomly generated number) in Push-2FA. One such
method is compare-and-confirm, where users compare the
identifier in the terminal and confirm it from the phone.
Another variant is select-and-confirm, which requires users
to tap the button containing the displayed identifier. These
variants are employed as a protection against fatigue attacks
in the confirm method (discussed in detail in Section 7). We
include all these variants of Push-2FA in our work.
According to our observation, the notification (both the

phone call and the push notification) communicates min-
imum authentication information in the push notification
body or in a voice call, which hinders users from making an
informed decision while authorizing the notification. This
scenario can be more significant when the notification is
shown in wearable devices (e.g., smartwatch) where the dis-
play size is much smaller to render important authentication
information (e.g., place, generation time).
Our Work: Security Analysis of Notification-based
2FA: In this work, we analyze information communicated
with the user in notification-based 2FA and demonstrate how
attackers can exploit it using a concurrent attack. Our pro-
posed “Concurrent Login Attack" blocks the user session
while simultaneously triggering a new malicious session
from the terminal. This attack compromises the notification-
based 2FA system without compromising the 2FA device
itself, such as a smartphone. We discuss the threat model in
detail in Section 4.1. Notably, we demonstrated the capability
of our attack in cross-service scenarios where users try to
authenticate to Service A, and the attacker collects the user’s
consent to login to Service B via a user study.

Previous works [6] commonly held the belief that attack-
ers must compromise both the knowledge factor (such as a
password) and possession factor (such as a smartphone) to
successfully compromise 2FA systems. However, our attack
framework and user study counter this belief by demonstrat-
ing how malware in the user’s terminal can undermine the
additional security provided by smartphones and wearables
in different types of currently deployed notification-based
authentication systems. It can also defeat proposed secure
Push-2FA schemes from the literature[28] that offer protec-
tion against concurrent attack on Push-2FA.
Our Contributions: Our contributions in this work are
three-fold:
(1) Analysis of information communicated in mo-

bile devices by notification-based 2FA : Our anal-
ysis focused on currently deployed Push-2FA systems
(e.g., Google, Duo) and notifications communicated
to users via smart devices, such as smartphones and
smartwatches.We assessed how these notifications can
aid in the decision-making process during authentica-
tion and found that insufficient information provided
to users can result in significant vulnerabilities.

(2) Design and implementation of concurrent login
attack framework: We developed an attack frame-
work, “Concurrent Login Attack", to assess the secu-
rity of Push-2FA systems when faced with malicious
programs on user’s terminal. Our evaluation of cur-
rently deployed Push-2FA and passwordless schemes,
which utilize push notification authentication as part
of their authentication method, revealed that nearly
all of them are susceptible to this attack. We found
that proposed academic systems claiming to protect
against concurrent attacks (e.g., Prakash et al. [28]),
are also vulnerable to it. Our proof-of-concept attack
has lower detectability in the presence of anti-malware
software and is stealthy, as it generates only a single
notification on registered mobile devices.

(3) A user study to evaluate the effectiveness of
cross-service attack on Push-2FA: Using our pro-
posed cross-service attack, an attacker can gain access
to a high-value service while the user is attempting to
authenticate to another service. To determine the effec-
tiveness of this attack, we conducted a lab-based user
study in which participants were presented with both
benign and cross-service notifications during authen-
tication. The results showed that users approved 82.2%
of all cross-service notifications. Notably, we observed
a lower detection rate of cross-service attacks in the
more secure Push-2FA variants designed to prevent
fatigue attacks (discussed in detail in Section 7).

Att demonstrations are shown at:
https://sites.google.com/view/push2fademo/home.

889



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

(a) compare-and-confirm UIs from terminal and smart-
phone

(b) select-and-confirm UIs from terminal and smartphone

Figure 1: Snapshots of compare-and-confirm and select-and-confirm UIs

2 AUTHENTICATION NOTIFICATIONS
2.1 Notifications in Mobile Device
Push Notifications: Push notifications utilize application-
specific secure channels to deliver alerts, general communi-
cations, and marketing campaigns to users. More recently,
service providers have adopted push notifications as a means
of collecting users’ consent during authentication attempts.
Users can approve or deny notifications from the notification
bar or open the application to viewmore detailed information
about the attempt. To use this authentication system, users
have to install the service provider’s app and pre-register.
Service providers use different variants of notifications

for push notification authentication. We consider three such
variants, which we named confirm, compare-and-confirm,
and select-and-confirm. confirm is a simple Push-2FA method
which shows the interactive “approve/deny" button in the
notification body. This variant is popular among well-known
service providers (e.g., Google prompt, LastPass [19], Duo
[13]). In compare-and-confirm variant, a unique identifier is
displayed in the authentication terminal screen and the push
notification body. The users are expected to compare the
identifiers and accept the notification if they match. Snap-
shots of the terminal and 2FA prompt of this scheme are
shown in Figure 1a. In the select-and-confirm variant, the
terminal displays a specific number, while the notification
body presents a set of numbered buttons, including the cor-
rect one. The user has to select the correct button to estab-
lish the user’s presence. This scheme is designed to avoid
the problem of potential skip-through behavior (where the
user accepts notification without comparing) inherent with
compare-and-confirm and confirm variants. Microsoft uses
select-and-confirm variant in their passwordless [37] scheme
where users have to provide phone lock credentials (e.g.,
fingerprint) in addition to approve select-and-confirm push
notification. Snapshots of the terminal view and the 2FA
device prompt for select-and-confirm are shown in Figure 7c.

Smartphone Notification

Smartwatch Notification

Terminal Prompt

Figure 2: Snapshots of smartphones, smartwatch, and user terminal
view of “confirm" Push-2FA

Opening the push notification in app provides users with
additional details (e.g., location, time) to make an informed
decision when approving the correct attempt. Wearable de-
vices (e.g., smartwatch) shows less information due to their
limited display size. Figure 2 displays push notification UI
snapshots on smartphone, smartwatch, and terminal views.
Phone Call Verification: One approach to obtaining user
consent for an authentication attempt is to place a phone
call to a pre-registered number and ask the user to press a
specific button to approve the request. With this method,
users retain the ability to deny the request by pressing an al-
ternative button and can report suspicious activity. However,
phone calls only ask users to make decision by pressing a
button, and no other information is communicated. Without
communicating service name, location, request time to users,
this method is vulnerable to cross-service attacks as it lacks
necessary information to make informed decisions.

2.2 Notification Information
Service providers show information about authentication
attempts in the notification body and the notification de-
tails. Some Push-2FA providers allow users to interact from

890



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

the notification body (e.g., Duo), while some others require
users to open the app to approve the notification (e.g., id.me)
where they can show detailed information. We noted our
observations in Table 1 (described in Section 6).
Notification from Notification Bar: Most service
providers allow users to approve/deny authentication
notifications directly from the notification bar. Due to
space limitations, service providers can not include much
information in the notification body, which results in the
skip-through behavior of users who approve the notification
without carefully examining it. Most service providers use
the name/logo along with the approve/deny button in the
notification bar.
Notification Inside App: The notification app shows more
authentication information inside the app compared to no-
tification body. Most of the Push-2FA providers we studied
show service, name, logo, location, and usernames. Some also
communicate authentication terminal device names and IP
addresses, which is useful during an authentication attempt.
Notification from the watch: Some service providers pro-
vide the feature to approve the notification from the smart-
watch for the user’s convenience. However, due to limited
space on the watch screen, generally, it shows only the ser-
vice provider logo as authentication information (e.g., Duo).
Phone Call: Some service providers (e.g., Duo) offer users
the opportunity to verify an authentication attempt via a
phone call. Here, after receiving the call, the user has to press
a specific number from the keypad to verify the attempt. We
observed that Duo does not communicate the service name
or other authentication information with the user, making it
susceptible to cross-service attacks.
Terminal Verification: Most of the Push-2FA service
providers do not consider terminal verification (i.e., user
verification if the notification is generated by the same au-
thentication attempt) in their workflow. Only Microsoft uses
it for two of their Push-2FA variants (compare-and-confirm,
select-and-confirm). Terminal verification is a powerful tool
(also demonstrated at [28]) to protect from concurrent at-
tacks generated by adversaries (e.g., the attack shown at
[16]). However, our designed Concurrent Login Attack can
also defeat terminal verification, which we demonstrated
and will elaborate more on Section 4.2.

3 RELATEDWORKS
Since authentication using push notification is a state-of-the-
art authentication method, not much work has been done
regarding its security issues. Zhi Xu and Sincun Zhu studied
vulnerabilities of push notification itself [41] and figured out
its possibility of malicious usages like phishing and spam-
ming. Another similar work is Android push notification
malware analysis by Hyun et al. [14] where malware can be

executed with the help of push notifications. However, in our
work, we did not compromise the push notification service
or invoke any malware in the 2FA device (e.g., smartphone),
and our attack methodology is different from phishing or
spamming. Li et al. [18] worked on security issues of push
notification cloud services and showed how an attacker can
exploit them. Our proposed attack does not compromise the
push notification service itself, and it is out of the scope of
our work. Ding et al. [12] have done a combination of formal
verification and testing on push notifications. All these works
are related to the security analysis of push notification itself
and the push notification service. On the other hand, we
specifically work with real-world push notification authenti-
cation systems and evaluate how external malicious actors
can compromise mobile-based push notifications without
compromising the mobile device itself.
Jubur et al. show a way of bypassing push notification

authentication in their work HIENA [16] by sending concur-
rent notifications to mobile devices. Through a user study,
they also assess the risk of users being deceived by concur-
rent malicious notifications. In contrast, our designed attack
methodology blocks user’s request and generates single mali-
cious notification to the user’s mobile device. As only a single
notification (with identical authentication information) is
shown in the user’s device during the active attack, our at-
tack methodology is stealthier than their work [16] which
generates multiple notifications in the mobile device that
38% of users can detect according to their study. Furthermore,
our attack methodology can detect a user’s authentication
attempt, activate itself, and generate a concurrent attack,
which is an added advantage compared to their work.

As discussed before, researchers are already working on
incorporating more user engagement and preventing con-
current login attacks on push notification authentication.
Prakash et al. [28] proposed six different methods to accom-
plish this purpose. They claimed their proposed authentica-
tion could prevent concurrent attacks using the randomness
property of different challenges presented during the authen-
tication process. However, our designed attack is capable of
blocking legitimate users’ requests and showing patterns
sent to the attacker on the attacker’s controlled page (simi-
lar to the example shown in Figure 3), which will persuade
users to enter the attacker’s pattern in their registered phone.
Thus, our proposed Concurrent Login Attack can defeat all
of the defensive schemes proposed in [28].
Mahdad et al. [20] designed an attack explicitly to defeat

OTP (One Time PIN) 2FA. The key difference with our work
is that, in notification-based 2FA, our attack convinces the
user into accepting a wrong notification which is not applica-
ble to OTP cases. Importantly, their work [20] is essentially

891



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Benign page Malicious page

(a) Comparison of benign and malicious page during attack on
compare-and-confirm Push-2FA

Benign Page Malicious Page

(b) Comparison of benign and malicious page during attack on
select-and-confirm Push-2FA

Figure 3: An example of similarity of benign and malicious pages during attack on compare-and-confirm and select-and-confirm Push-2FA

a passive same-service attack with some optional active ele-
ments, whereas our attack is fully active with cross-service
attack capability.

4 ATTACK DESIGN
4.1 Threat Model
We assume an adversary who can install a malicious pro-
gram in the user’s authentication terminal. The malicious
program will not require any administrative privilege from
the OS during installation. It will not compromise the OS
core functionality after installation and will not access re-
stricted areas of the OS. We also assume that the adversary
will convince users to install a benign-looking browser ex-
tension containing malicious code. The extension will not
compromise browser itself, rather, monitor all redirection
from address bar, can block and redirect to another site.

According to the Sonicwall Cyberthreat report 2021 [31],
5.6 billion malware are reported along with 4.8 trillion in-
trusion attempts, including client application attacks and
remote code execution. According to the NTT Global Threat
Intelligence Report 2019 [24], about 33% authentication cre-
dential theft is done by malware, associated with keyloggers.
Also, researchers discovered malicious browser extensions
that affect millions of users [15, 38, 42] by redirecting them
to a malicious site. Cybercriminals increasingly use it nowa-
days [36], and it is a well-known and common cybersecurity
threat [39]. So, the assumption of malware and malicious
browser extensions represents a practical threat.

We also assume targeted users will use laptop or desktop
computers running on Windows operating systems and the
Google Chrome browser to authenticate to a targeted service.
Most importantly, the adversaries will not compromise any
mobile device (e.g., smartphone, wearable devices) used as a
possession factor device in Push-2FA.
Furthermore, the adversaries will not have the ability to

steal session cookies from browsers or any other session hi-
jacking capability. Our proposed attack demonstrates more

effectiveness compared to traditional session hijacking tech-
niques, particularly in the context of cross-service attacks.
In Section 7 (Comparison with Session Hijacking Attack),
we further elaborate on the additional advantages offered by
our method over the conventional session hijacking attack.

4.2 Attack Workflow
Attack Components: We have used three primary attack
components. Our designed Attack module, a keylogger pro-
gram (KL), has the capability to learn usernames and pass-
words beforehand, enabling it to generate patterns based on
the known credentials for use in the actual attack. When a
user’s input matches the pattern, it constitutes condition 1
(C1), which triggers the Background Browser Session (BBS)
to activate. The BBS can perform user activity automation
from the background using the Chrome driver [9].
Another attack component is a malicious browser exten-

sion (BE), which monitors internet traffic and looks for a
match with the URL of the targeted authentication service.
This match constitutes condition 2 (C2). When C2 is satis-
fied, the BE blocks the user’s request and redirects them to an
attacker-controlled page where attacker-specific altered in-
formation or instructions would be shown (e.g., instructions
to approve the notification or provide a unique identifier).
After some time (currently set to 15 seconds in our imple-
mentation), the user will be redirected to the authentication
information entry page (i.e., login page).

The purpose of redirecting the user after a certain amount
of time is to create the impression of an error, with the in-
tention of avoiding arousing suspicion. Even if users detect
an ongoing attack, they might be unable to stop substantial
real-time harm, like emptying a bank account.
Malicious Program Installation: Malicious program com-
ponent Keylogger (KL) is a standalone program and can run
without installation, and the Background Browser Session
(BBS) (which is a jar file) can be run with a portable Java
Runtime Environment (JRE). Neither procedure requires ad-
ministrative privileges during operation in the user terminal.

892



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

User

Terminal
Service

Mobile Device

1. U
ser R

equest

1. User Request

2. Block

3. Malicious Request

4. M
alicious N

otific
ation

5. User Approval

5. User Approval

5. Authentication Success

Figure 4: Overview of General Attack Workflow

KL

User Input

If 
pattern 

Matched
?

No

BBS BE

Yes Username, Password

Submit

Authentication 
ServiceMobile Device

User Confirmation
If 

Confirmed
?

Attack Successful

Attack Failed

Yes

No

If URL 
Matched

?

Altered Page

Block and
Redirect

Yes

If 
timeout

?

Login Page

Yes

No

NoPush Request

Response

Figure 5: Block Diagram of General Attack

Cyber attackers frequently hide malicious browser extension
code within seemingly benign extensions, a tactic that has
been documented in recent reports (e.g., [8, 43]).

4.2.1 General Workflow. We present an active concur-
rent attack which is initiated when the user starts the au-
thentication process. The General workflow of this attack is
primarily applicable to the confirm Push-2FA. The overall at-
tack workflow and block diagram are shown in Figure 4 and
Figure 5, respectively. Further steps are elaborated below.
(1) Step 1: When the user starts the authentication pro-

cess on the targeted service’s site, KL starts monitor-
ing keystrokes and launches BBS when condition C1
is met.

(2) Step 2: BE blocks the initial request made by the user
to the authentication service

(3) Step 3: BE redirects users to an attacker-controlled
page which is a similar-looking web page to the tar-
geted service’s one (as shown in Figure 3). At the same
time, BBS sends the request to the service.

(4) Step 4: Only the authentication request generated
from BBS can reach the authentication service, and
only a single notification is generated for the user.

User

Terminal
Service 1

Mobile Device

1. U
ser R

equest

1. User Request

2. Block

3. Malicious Request

4. Malicious Notification

5. User Approval

5. User Approval

5. Authentication Success

Service 2

Figure 6: Overview of Cross-service Attack

(5) Step 5: As the user has the intent to authenticate and
only a single request is generated with the same au-
thentication information (e.g., location, browser), the
user would approve it, which eventually approves the
attacker’s authentication request.

4.2.2 Cross-service Attack Workflow. In the cross-
service attack, KL gathers authentication credentials for both
S1 (the intended service for user authentication) and S2 (a
different service utilizing the same Push-2FA service). In an
active attack scenario, when the user intends to authenticate
on S1, the malicious program blocks the user’s effort and
covertly initiates the authentication process on S2 in the
background. Refer to Figure 6 for the high-level workflow of
this cross-service attack.
(1) Step 1: KL collects username and password for both

S1 and S2.
(2) Step 2: Same as the general workflow Step (1). Here

BBS starts authentication for S2.
(3) Step 3: Same as the general workflow Step (2).
(4) Step 4: Same as the general workflow Step (3). It shows

a similar-looking attacker-controlled page of S1 (the
service user intended to authenticate).

(5) Step 5: At this point, users expect a notification (A
push notification or phone call). For phone call, as no
service name is communicated, users will approve the
notification, assuming the call is generated for their
request. For push notifications, the users are likely to
accept the notification due to skip-through behavior.

4.2.3 Attack on compare-and-confirm Push-2FA.
Upon receiving a user request, the authentication service
displays a distinct identifier on the terminal screen (e.g.,
browser). This identical identifier appears on the subsequent
push notification to the phone. The user’s task is to compare
these identifiers and validate the authentication attempt.
The steps are outlined below.

(1) Step 1-2: Same as the general workflow.

893



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

(2) Step 3: BE redirects the user to an attacker-controlled
page which will show the attacker’s unique identifier
generated from BBS authentication request.

(3) Step 4: Same as the general workflow.
(4) Step 5: As the notification is generated with the at-

tacker’s unique identifier, which would be shown in
the browser window by malicious BE, the user would
approve the notification thinking that it is generated
from their request.

4.2.4 Attack on select-and-confirm Push-2FA. Unlike
the compare-and-confirm Push-2FA, here, users have to se-
lect a button containing a specific identifier (e.g., a two-digit
number) and tap it to approve the authentication request
from the mobile device. select-and-confirm variant is de-
signed to counter the skip-through behavior of the users
(i.e., not paying much attention to the unique identifier) dur-
ing compare-and-confirm. However, the Concurrent Login
Attack can defeat this specific variant using the following
steps.
(1) Step 1-2: Same as the general workflow.
(2) Step 3: Same as the compare-and-confirm.
(3) Step 4: Same as the general workflow.
(4) Step 5: As the unique identifier (generated for BBS re-

quest) is shown in the user’s browser window, and the
legitimate user’s request is blocked by BE, the notifica-
tion arrives in users mobile device will show buttons
with identifiers where one of them is the attacker’s
unique identifier.

4.3 Implementation Overview
Attack component KL is developed using libraries of Python
3.7 and BBS is developed using SeleniumWebdriver [30] and
PhantomJS [26]. Selenium web driver requires chromedriver
[9] to be present to run the scripts. These automated browser
tools can replicate any user’s action and send requests to
authentication services on behalf of them. They can also run
in headless (i.e., running from the background and the user
has no trace of it) mode, which helps the attack to be stealthy.
Selenium web driver needs a java runtime environment to
make it operational.
The attack components can be packaged as python exe-

cutables which can call the executable jar files when C1 is
satisfied. Java runtime environment and chromedriver can be
pushed during malware injection. None of the components
needs an installation that requires administrative privilege.
Component BE used Google Chrome browser extension

libraries to monitor URLs in the address bar and block any
request when a pattern is matched (during submission of
legitimate users’ request). It can also redirect the user to
the attacker-controlled web page and redirect back to the
authentication services login page after a moment. These

(a) Authentication UI of web ap-
plication.

(b) Intermediate page UI of web
application.

(c) Notification UI of smart-
phone application.

Figure 7: UI of web application and smartphone application used in
the user study.

malicious browser extension codes can be placed inside any
benign-looking necessary browser extension, which can act
as BE later.

5 USER STUDY DESIGN
Concurrent login attacks on the same service are simple
to execute, as the attacker can send a single notification
that appears identical to a legitimate one. Since the attack
is active, the user anticipates receiving a notification and
may not realize that it is part of an attack. In contrast, cross-
service attacks involve sending notifications that contain
different information, such as the service name and logo,
from the one the user intended to authenticate. To evaluate
users’ responses to cross-service attacks, we conducted a user
study in which we implemented this attack for the confirm,
compare-and-confirm, and select-and-confirm variants.

For phone-call-2FA, no service name is currently commu-
nicated with the user during the call, making a cross-service
attack straightforward to execute without providing any dis-
tinguishable information to the user. Therefore, we did not
include it in our user study.

5.1 Implementation
We have developed a secure authentication system for the
user study that utilizes push notifications to provide an ad-
ditional layer of security beyond traditional username and
password credentials. Our authentication system is com-
posed of two primary components:
Web Application: We have developed a web application
for the user study using HTML, PHP, JavaScript, CSS, and
MySQL that offers user registration and authentication fea-
tures. We used Google Firebase to implement push notifica-
tion authentication, which we integrated with both our web
and smartphone applications. Our registration feature allows

894



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

users to sign up using their email addresses. After entering
their username and password, participants are redirected to
an intermediate page. Here, instructions are provided to ap-
prove a notification (for the confirm variant) or a unique iden-
tifier (for the compare-and-confirm and select-and-confirm
variants). Our application automatically checks if the correct
button is pressed in the smartphone notification and makes
an authentication decision accordingly.
Smartphone Application: We have developed an Android
application specifically for push notification authentication,
which we integrated with Firebase. When a logged-in partic-
ipant makes an authentication attempt, the app receives a
push notification that displays the service name, logo, and a
unique identifier to provide participants with the informa-
tion they need to make an informed decision. During this
study, participants were asked to approve or deny notifica-
tions only from the notification body. Once a participant
responds, the information is sent to our web application to
finalize the authentication decision.

Our primary objective was to assess whether participants
could distinguish the service name/logo in the case of a cross-
service attack, which is present in the notification body. The
notification detailed page shown in the app displays other
details about the notification attempt, such as location, IP,
and device name (see Table 1). To keep the participants’
task simple, we only implemented approval/denial from the
notification body, which fully served our purpose.
Snapshots of the web application and smartphone appli-

cation used in the user study are depicted in Figure 7.

5.2 Authentication Attempts
Throughout the study, we sent two primary types of notifica-
tion during the authentication attempt and recorded user’s
response for them:
Benign Notification: Most of the notifications sent during
the study are benign notifications where the same service,
logo, and same unique identifier is shown in the notification
body.
Cross-service Notification: We also generated cross-
service notifications (comprising 30% of the total notifica-
tions) for each variant, which displayed a different service
name and logo.

5.3 Study Metrics
After a notification is sent to participants, they have the
option to either approve, deny or not respond to it.We denote
approved benign notifications as BNapproved , denied benign
notifications as BNdenied , and benign notifications that have
not been responded to as BNnr . Similarly, we useCSapproved
to denote cross-service approved notifications, CSdenied to

denote denied notifications, andCSnr to denote notifications
that have not been responded to.
To evaluate users’ responses to benign and cross-service

notifications, we used two metrics: Benign Notification Suc-
cess Rate (BNSR) and Cross-Service Notification Success Rate
(CNSR). They are calculated using following formulas:

BNSR =
∑

i BNapproved∑
i BNapproved +

∑
j BNdenied +

∑
k BNnr

(1)

CNSR =
∑

i CSapproved∑
i CSapproved +

∑
j CSdenied +

∑
k CSnr

(2)

For an ideal Push-2FA system, we expect the BNSR to be
100% and CNSR to be 0%. Here, i, j, and k represent the
total number of approved, denied, and pending requests,
respectively.

5.4 Study Protocol
This study has been approved by our university’s Institu-
tional Review Board (IRB), and participation is entirely vol-
untary. In accordance with IRB guidelines, we have followed
standard procedures to ensure participant privacy and confi-
dentiality. Participants are free to withdraw from the study at
any time, and we have taken care not to save any identifying
information in our system.
We recruited a group of 20 participants of varying ages

who were familiar with both two-factor authentication and
push notification authentication. Each participant was pro-
vided with a laptop and an Android smartphone for authen-
tication purposes. A researcher acted as the facilitator and
explained the different variants of push notification authenti-
cation that were used in the study, including the information
communicated in each variant such as the service name, logo,
and unique identifier.

We structured our study into distinct stages to help orga-
nize the research process:
Orientation Phase: In this phase, the facilitator provided an
overview of the different types of push notification authen-
tication and the information that would be communicated
to participants in the notification body. Participants were
instructed to interact with the notification (i.e., approve or
deny it) only from the notification body. The facilitator also
showed the name and logo of the dummy email provider
service that would be displayed on the login page. To ad-
dress participant privacy concerns, we did not save their
email/password in our system; therefore, the facilitator cre-
ated a dummy account and password for each participant
specifically for the study.
Pre-test Quesionnaire: As part of our data collection pro-
cess, we administered a pre-test questionnaire that gathers

895



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Table 1: Information communicated by notification-based authentication system

Service Provider(UI) Service Name Logo Location Time IP Username Device
Name

Approve/Deny Terminal
Verification

Duo (Notification Body) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Duo (App) ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Duo (Phone Call) ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗
Google 2SV (Notification Body) N/A ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Google 2SV (Notification Details) N/A ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

LastPass (Notification Body) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
LastPass (Notification Details) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗

LastPass (Phone Call) ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗
Microsoft (Notification - confirm) ✓ ✗ Country Only ✗ ✗ ✓ ✗ ✓ ✗

Microsoft (Notification -
compare-and-confirm)

✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Microsoft (Notification -
select-and-confirm)

✓ ✗ Country Only ✗ ✗ ✗ ✓ ✗ ✓

ID.me (Notification) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
ID.me (App) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

demographic information. This questionnaire included ques-
tions about the participant’s age group, gender, and famil-
iarity with using 2FA and push notification authentication
systems.
Familiarization Phase: During this phase, participants
were asked to authenticate in our system using the pro-
vided username and password and received notifications.
The phase consists of 10 attempts, which cover three dif-
ferent variants of push notification authentication: confirm,
compare-and-confirm, and select-and-confirm. This practice
phase is designed to ensure that users understand the study
workflow and become accustomed to using the system.
Data Collection Phase: During this phase, participants
were required to authenticate themselves in our system 30
times. The three types of push notifications were presented
in a random order, with 10 notifications of each type. 30% of
these notifications are designed to display different service
names and logos. We recorded each participant’s response
to the push notification in this phase.
Post-test Questionnaire: The questionnaire administered
during this phase aimed to gather feedback from participants
on any suspicious behavior they may have observed during
the study. In addition, we asked specific questions to elicit
further details on such behavior, including possible reasons.
Finally, we inquired about the frequency with which partici-
pants noticed the URL of the intermediate page (i.e., the page
that displays the unique identifier).

During both the familiarization and data collection phases,
each attempt takes an average of 30 seconds. With a 5-second
wait time between each attempt, the familiarization phase
lasts approximately 6 minutes (10 × 35 = 350 seconds), and
the data collection phase lasts around 18 minutes as (30 ×
35 = 1050 seconds), for each participant. The attempts are
presented back-to-back to the participants.

6 EVALUATION AND RESULTS
6.1 Mobile Notification Information
User possession is established in notification-based authen-
tication systems through interactive communications (e.g.,
push notification, phone call) to the user where they are
responsible for scrutinizing and approving the proper noti-
fication. Here, the service providers display some essential
information beforehand to help in making decisions on au-
thentication. We list down information that is generally com-
municated with the users during the authentication process.
Service Name: When the push notification authentication
system supports multiple services (e.g., Duo), it is important
to display the service provider’s name (referred to as “Ser-
vice Name" throughout the paper) in the notification body
or communicate it during the phone call. Otherwise, the
authentication system would be vulnerable to cross-service
attack.
Service Logo: Sometimes, the logo ismore eye-catching, and
the user can easily distinguish between two different logos.
Moreover, it is convenient to show logos instead of service
names on devices with limited displays (e.g., smartwatch).
IP and Location: The IP and location information is vital
to detect any remote or suspicious authentication attempt.
Although the attacker can spoof the IP address easily, it is
an important indicator to be checked carefully.
Generation Time: Sometimes, the attacker used to send
random notifications to users hoping that the user would ap-
prove themmistakenly in order to clear the notifications [35].
Also, they can send multiple notifications as shown in [16]
where examining sending time is crucial before approving
any notifications.
Username: To ensure approval of the correct authentication
request, it is important to know the request originator’s
username. Careful checking of username/email address will
prevent the users from malicious authentication attempts.

896



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

Some Push-2FA designers provide the feature of approv-
ing/denying the notification from the notification body. Oth-
ers require opening the notification detail page to enforce
more user engagement in the authentication process and
show more detailed information that would help them to
make an informed decision. In the case of phone calls, users
can approve/deny notifications by pressing specific buttons
(instructions communicated with the user). Some of the
Push-2FA authentication systems (e.g., compare-and-confirm,
select-and-confirm) also provide unique identifier with each
notification which is also communicated to the user terminal
to protect users from fatigue attacks.
We analyzed notifications from 5 top service providers

(Google, Duo, LastPass, Microsoft, ID.me) that use Push-2FA
for authentication, and summarized our findings in Table 1.
Our study shows that service providers limit the authenti-
cation details shown to users in the notification body, often
only including an approve/deny button. Notably, Duo and
Id.me display only the service name/logo, while LastPass does
not show the service name at all. This lack of information
during authentication is a significant vulnerability that can
make the authentication system vulnerable to cross-service
and random notification attacks.
Some service providers (e.g., Duo, LastPass) provide the

"Call Me" option to provide more flexibility in the authentica-
tion. However, we observe that none of them communicates
the service name (i.e., for which organization /provider the
call is generated) during the phone call and just ask the user
to press a specific button (e.g., button "3" for Duo) to approve
the notification. By taking advantage of users’ skip-through
behavior, the adversary can easily introduce a cross-service
attack in push notification service providers, which are used
in multiple organizations (e.g., Duo).
Users can only see detailed information when they open

notification details. However, some providers (e.g., LastPass)
show only the username as detailed information. Further-
more, device name and location/IP are also critical for in-
formed decisions. However, some providers (e.g., Microsoft)
only display country names as location information, leaving
them vulnerable to remote attacks.
Careful users can identify their notification source us-

ing the device name displayed in the notification details.
However, our analysis indicates that only Google and Id.me
provide this device information. Unfortunately, authentica-
tion request time is not shown in interactive notifications
(e.g., Duo, LastPass), creating an opportunity for Random
Notification attackers.

6.2 User Study Result Analysis
Demographic Information: Among the participants, 50%
were between the ages of 31-40, while 45% were between

the ages of 21-30. The remaining 5% were in the age group
of 41-50. All participants are university graduate students
and 50% of them are male and the other 50% are female. All
participants were familiar with two-factor authentication
and had previously used push notification authentication.
Among the participants, 80% reported using two-factor au-
thentication for banking and email, while 70% reported using
it for social media.
Benign Notification: Throughout the study, a total of 420
benign notifications across three push notification variants
were sent. Using Equation 1, we calculated a benign notifi-
cation success rate (BNSR) and achieved an overall success
rate of 92.38%. Users denied 5% of the benign notifications
and did not respond to 2.62% of them. These results suggest
that users were able to efficiently manage the system and
follow instructions. The overall BNSR and breakdown of no-
tification success rates across all variants are presented in
Table 2.
Cross-serviceNotification:We have sent 180 cross-service
notifications simulating our proposed attack throughout this
study to all participants. To evaluate the effectiveness of our
approach, we calculated the Cross-service Notification Suc-
cess Rate (CNSR) using Equation 2. Our results show a high
success rate of 82.22%, indicating that our proposed attack
was successful in most cases. However, we also observed a
denial rate of 16.11%, which suggests that some participants
were able to detect and deny the cross-service notifications.
We have shown overall CNSR and breakdown of approval,
denial, and no response rate for all three variants of push
notification authentication in Table 2.
Among the variants, participants denied 40% of cross-

service notifications for the confirm variant, 6.67% cross-
service notifications from the compare-and-confirm variant,
and only 1.67% notifications from the select-and-confirm vari-
ant. Interestingly, we noticed that when participants were
assigned an additional cognitive task, such as comparing
unique identifiers, they were more likely to miss changes in
service names or logos. As a result, the cross-service attack
detection rate was lower in the protective scheme designed
to prevent fatigue attacks [35] by engaging users to com-
pare/select a number in the notification approval process.
Attacker-controlled Intermediate Page: The attack pro-
gram blocks the user’s request and redirects them to an
attacker-controlled intermediate page, which looks similar
to the original page (as shown in Figure 3). This allows the
attacker to display their unique identifier, as in the case
of compare-and-confirm and select-and-confirm. Our user
study revealed that 40% of participants never checked the in-
termediate page URL, while 20% checked it only a few times
(less than 40% of attempts). Only 20% reported checking it ev-
ery time. This survey result reinstates the attack opportunity
using an intermediate page URL by the attackers.

897



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Post-test Questionnaire: We have asked questions about
participants’ experiences during the study. Of those surveyed,
40% reported not noticing any suspicious behavior, such as
changes in service names within notifications. A significant
number of users (35%) believed that cross-service notifica-
tions were generated due to a system error, while only a small
number (15%) suggested that such notifications were caused
by malicious activity on their devices. Throughout the study,
45% of participants did not deny any notifications. Among
all participants, 50% reported denying notification because
they noticed a change in the service name, while only 20%
reported noticing a change in logo. Among the individuals
who believed there was a system error, they approved 68.25%
of the malicious attempts and denied the remaining 31.75%.

Table 2: Summary of User Study Findings.

Scenario Variant Response BNSR CNSR
Approve Deny NR

Benign
confirm 85.71% 11.43% 2.86%

92.38% –compare-
and-confirm

95.71% 1.43% 2.86%

select-and-
confirm

95.71% 2.14% 2.14%

Attack
confirm 56.67% 40.00% 3.33%

– 82.22%compare-
and-confirm

91.67% 6.67% 1.67%

select-and-
confirm

98.67% 1.67% 0.00%

NR – No Response

6.3 Summary of Attack Detectability
We list down attack detectability from the user terminal
and 2FA device in Table 3. In the same-service attack, the
user will see no difference in the notification information (i.e.,
information listed in Table 2) and the number of notifications
(the user receives a single notification that they expected)
at the 2FA device compared to the legitimate scenario. So,
there is no way to detect same-service attacks from the 2FA
notification. Similarly, for phone-call-2FA, no service name
is communicated with the user during a phone call, hence,
there is no way to detect cross-service attacks from the 2FA
device. As a result, we marked these cases as No in terms of
detectability in Table 3.
From the user study we observed that, participants only

approved 56.67% cross-service notification for the confirm
variant. So, we marked the detectability asModerate in that
case. We also noticed that participants approved more than
90% notifications from compare-and-confirm and select-and-
confirm variants. As such, we mark the detectability as Very
Low here. Detection from the user terminal largely depends
on whether users noticed the change in URL for the altered
intermediate page. According to user study outcome, only
20% of participants checked the URL always, and 40% never
checked them. So, we mark the detectability from the user
terminal as Low for all cases.

Table 3: Summary of Attack

Notification
Variant

Attack
Variant

Detectable
in 2FA
Device

Detectable
in Ter-
minal

Confirm Same-service No Low
Cross-service Moderate Low

Compare-and-Confirm Same-service No Low
Cross-service Very Low Low

Select-and-Confirm Same-service No Low
Cross-service Very Low Low

Phone Call Same-service No Low
Cross-service No Low

Table 4: Scan Result of Desktop and Web-based Anti-malware En-
gines

Name Detected?
Windows Defender [23] ✗

Avast [2] ✗
MalwareBytes [21] ✗

Kaspersky Security Cloud [1] ✗
Sophos Home [32] ✗

Avira [4] ✗

AVG [3] ✓1

Virustotal [40] ✓2

Mcafee Total Protection (Free Trial)
[22]

✗

✓- Detected, ✗- Not Detected

6.4 Detection by Anti-Malware Programs
Anti-malware programs detect malware through signature-
based analysis and behavior-based analysis. Signature-based
analysis matches the code of a malicious program with
known malware signatures. However, it’s possible to evade
detection by refactoring suspicious code. We have designed
our program to avoid overloading the user’s terminal with
multiple requests, consuming an excessive amount of mem-
ory, or accessing restricted files in the operating system.
Table 5 shows a comparison of resource consumption be-
tween our program and three other benign applications. Ad-
ditionally, we have refactored our code and incorporated
custom libraries to circumvent signature-based analysis per-
formed by anti-malware programs. These characteristics
help our program avoid detection during behavior analysis
by desktop-based anti-malware programs.

We tested our proof-of-concept program with eight desk-
top anti-malware programs and the online tool VirusTotal
[40]. It remains undetected by all of the desktop-based anti-
malware programs and most anti-malware engines in virus-
total, as shown in Table 4. Only two out of sixty engines
detected it as a threat. However, during further testing, we
evaluated these two engines using other benign and simple
python executables. Interestingly, we found that they clas-
sified each of these executables as malware. Therefore, the
detection turned out to be a false positive.
1After showing the warning and performing an initial scan, the program is
allowed to run.
2Only 2 engines detected it which turns out to be a false alarm

898



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

Table 5: Comparative resource consumption of our attack program
with Google Chrome, Microsoft Word and Skype.

Usage Computational Range
Attack Program Chrome Word Skype

CPU (%) 0.01 – 20.1 7.5 – 51.6 0 – 31.5 0.5 – 50.1
RAM (MB) 26 – 127 760 – 1150 68 –110 131–320
Power3 VL – L L – H L – VH L– M

Network (Mbps) 0 0 – 11.3 0 0 – 4.6
VL - Very Low, L - Low, M - Moderate, H - High, VH – Very High

7 DISCUSSION & FUTUREWORK
Limitation of User Study: In our user study, we used cus-
tom web and mobile applications rather than participants’
everyday apps, due to ethical concerns. Participants used our
provided computer and smartphone. We did not implement
all user interfaces found in real-world push 2FA systems. In-
stead, we used a standard push notification body on Android
that conveyed all necessary information. These factors could
have affected participant behavior and response. The study
required participants to authenticate 30 times, potentially
leading to habitual bias. However, we achieved a 92.38% be-
nign application approval rate, indicating that participants
were capable of completing the task. Overall, 16.11% of no-
tifications were denied, with 40% of "confirm" variant noti-
fications being denied, indicating that participants noticed
changed information during the cross-service attack. We
have selected participants from a pool of graduate students
who are habituated to using push notification authentication
daily in their university authentication procedure. This may
introduce a selection bias in the study. However, it can be
inferred that if graduate students, who are likely to be tech-
nologically sound, cannot detect the cross-service attack, it
might be even more challenging for average users to identify.
Comparison with Random Attack on Push-2FA: In the
MFA-fatigue attack, the attacker can send multiple push no-
tifications on the user’s mobile device randomly. In that case,
the user has a possibility of accidentally accepting the notifi-
cation to clear multiple annoying notifications thinking that
it shows up due to a bug [35]. However, a vigilant user can
defeat this attack by carefully reviewing the information in
the notification body (e.g., location, IP, device) or discarding
unexpected notifications that they are not expecting. On the
other hand, “Concurrent Login Attack" is an active attack
generated from the same user terminal which sends only a
single notification to the user’s phone. As a result, it would
be very difficult to distinguish these notifications as users
would expect it at that time and all other information, such
as location, and device name would be the same.
Comparison with Active Phishing Attack on Push-
2FA: The adversary may trick users into providing authenti-
cation credentials to an attacker-controlled site and generate

3 Power Metrics used in Windows 10

notifications on their phones by requesting the credentials
simultaneously. However, since the request is sent from a
remote machine, the IP address, location, and machine name
may differ, allowing a vigilant user to notice. Although spoof-
ing IP addresses and locations are easy for attackers, doing
so for each user can be challenging. Our attack design avoids
the need for IP or location spoofing, as the initial request is
generated from the same device. This limits detection oppor-
tunities, even for the most careful users in our case.
Comparison with Session Hijacking Attack: Our de-
signed concurrent login attack creates independent sessions,
which differs from session hijacking attacks. This approach
offers more advantages, such as increased flexibility for at-
tackers, as the user cannot terminate the attacker’s session
or prevent their activities. Notably, our attack enables more
damaging cross-service attacks, unlike session hijacking.
However, it is important to note that session hijacking is not
an attack against the 2FA system per se. Instead, it leverages
an existing user session to carry out malicious activities. Ac-
cording to Ballare-Rogaway [5], relay attacks such as session
hijacking is not considered as a valid attack against a secure
protocol. They argue that a valid attack on a secure protocol
occurs when a malicious entity successfully masquerades
as a trusted entity, effectively bypassing the security mea-
sures in place. Our proposed attack method establishes a
new, independent session specifically for attackers, separate
from the user’s session, and behaves like a trusted entity
to compromise the 2FA system, which constitutes a valid
attack as per the definition provided by Ballare-Rogaway [5].
Our focus is to explore vulnerabilities in the authentication
workflow, rather than stealing session cookies.
Concurrent Login Attack Vs. Passwordless Authenti-
cation: Passwordless authentication employs possession fac-
tor verification methods (e.g., security key, push notification)
alongside device verification techniques (e.g., fingerprint,
PIN) for user authentication. Concurrent login attacks can
compromise passwordless schemes that rely on notifications
to establish device possession, effectively reducing the at-
tacker’s challenges. Additionally, since the attack is active
and users are expecting a notification during the attack, they
are likely to provide a screen lock or biometric verification
afterward, making it easier for the attacker to access the
user’s device. Notably, in passwordless authentication, the
attacker does not need to capture passwords, which reduces
the overall complexity of the attack. However, Keylogger
(KL) module is still needed to capture the username.
Concurrent Login Attack Vs. Password Managers: Us-
ing a password manager can provide an additional layer of
security by eliminating the need for users to manually enter
their login credentials into the terminal, thereby reducing
the risk of a keylogger program, such as our KL module,
intercepting the keystrokes. However, it’s important to note

899



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

that password managers can also be vulnerable to concurrent
login attacks, which can compromise the manager itself and
allow attackers to retrieve the stored passwords. In the attack
demonstration, we have shown how the LastPass password
vault can be compromised, as a representative example.
Other 2FA Deployments: Two-Factor Authentication
(2FA) deployments, particularly in the financial services sec-
tor, prioritize strengthening security in the customer authen-
tication process. These services commonly rely on third-
party ID providers like Duo [13] and Ping ID [27] for em-
ployee authentication, while customer authentication utilizes
methods such as One Time PIN (OTP) or biometrics. Ping
ID, for instance, employs SMS-OTP, the “confirm" variant
of push notification authentication, or biometric verifica-
tion (e.g., fingerprint) as Multi-Factor Authentication (MFA)
methods.
However, a vulnerability arises in Ping ID due to the ab-

sence of service names, such as the organization’s name, in
the notification and SMS bodies. This exposes Ping ID to a
cross-service attack that we have devised. Furthermore, SMS
OTP verification, widely employed by financial services as a
2FA method for customer-facing services, is susceptible to
the general attack flow depicted in Figure 5. Additionally,
some services utilize phone fingerprint verification as a 2FA
method to confirm user presence.
In both scenarios, adversaries can obstruct the user’s re-

quest and simultaneously send a fraudulent request to the
service, resulting in an SMS containing the adversary’s OTP
and a fingerprint verification request. Since the targeted
users are anticipating a notification at that moment, and
there are no apparent distinctions between the genuine SMS
and fingerprint request, users may be deceived into approv-
ing them by providing their fingerprint and entering the
OTP on their device. Adversaries can then capture this in-
formation and exploit it to authenticate their own session.
So, here, SMS-OTP does not effectively mitigate the risk of
compromise posed by our designed attack.
Potential Mitigations & Challenges: For phone-call 2FA,
service providers must add service information during the
call to circumvent cross-service attacks. Perhaps using a
different audio sound for different classes of services may
help users better detect potential attacks.
To ensure the security of push notification systems, it is

crucial to display important identifying information, such as
location, IP, time, and device name, when the approve/deny
button is presented to the user. Failing to provide this in-
formation makes push schemes vulnerable to random and
concurrent attacks, including our proposed attack. It is es-
sential for identifying information and security measures to
become standard practice across all service providers.

It is recommended that users should deploy phishing site
detection tools and carefully examine URLs of intermediate

pages during authentication attempts, not only the login
page. While this approach can improve security to some
extent, its effectiveness depends on the efficiency of the de-
tector or the user’s attention to the browser address bar.
Authentication system designers should make the logo

larger and more visible to the user, especially with devices
with a limited interface, such as smartwatches. In our threat
model, we assume that adversaries will not compromise
the mobile device (e.g., smartphone) used as a possession
factor, nor intercept the push notification service registration
process. Consequently, push service providers like Duo will
store and display the original logo. While an enhanced logo
visibility can aid in detecting the attack within our adversary
model, it cannot guarantee absolute prevention.

Implementing certain mitigation measures can reduce the
risk of the proposed concurrent login attack to some degree.
However, since this is a fundamental attack, it cannot be com-
pletely eliminated, and some level of risk may still remain.
Moreover, it can achieve security at the cost of lowering
the system’s usability and more reliance on user diligence,
which may undermine the founding motivation behind these
schemes as they were designed to make the login processes
less cumbersome for the user.
Future Work: The researchers have the opportunity to de-
velop similar attacks on more OS-browser combinations (e.g.,
smartphone OS and browser) to design more general attacks.
They also have the scope to design a more secure Push-2FA
authentication system that can prevent similar attacks while
keeping usability as a priority.

8 CONCLUSION
With the emerging popularity of notification-based authenti-
cation systems, it also becoming target of cybercriminals
aiming to exploit its shortcomings. In this work, we fo-
cused on such vulnerabilities and designed a concurrent
login attack from the user terminal, which can compromise
notification-based authentication system without compro-
mising the possession-factor device. The demonstration of
our proof-of-concept attack and user study exhibits this crit-
ical vulnerability in action. The vulnerability disclosed by
our work can provide opportunities for researchers to work
on more secure yet usable notification-based authentication
systems in the future. It will also help the service providers
to streamline their authentication process by carefully eval-
uating our observations and recommendations.

ACKNOWLEDGMENTS
This work is funded in part by NSF grants: OAC-2139358,
CNS-2201465 and CNS-2152669.

900



ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

REFERENCES
[1] AO Kaspersky Lab. 2021. Kaspersky Security Cloud - Free.

https://www.kaspersky.com/free-cloud-antivirus.
[2] Avast Foundation. 2021. Avast Free Antivirus.

https://www.avast.com/en-us.
[3] Avast Software s.r.o. 2021. AVG Free Antivirus.

https://www.avg.com/en-us/.
[4] Avira Operations GmbH & Co. KG. 2021. Avira Antivirus.

https://www.avira.com/.
[5] Mihir Bellare and Phillip Rogaway. 1993. Entity authentication and key

distribution. In Annual international cryptology conference. Springer,
232–249.

[6] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank
Stajano. 2012. The quest to replace passwords: A framework for com-
parative evaluation of web authentication schemes. In 2012 IEEE Sym-
posium on Security and Privacy. IEEE, 553–567.

[7] Kay Bryant, John Campbell, et al. 2006. User behaviours associated
with password security and management. Australasian Journal of
Information Systems 14, 1 (2006).

[8] Chrome Unboxed. 2022. These 30 malicious Chrome ex-
tensions just showed their true colors, affecting millions.
https://chromeunboxed.com/color-changing-malicious-chrome-
extensions.

[9] Chromium Project. 2021. ChromeDriver- WebDriver For Chrome.
https://chromedriver.chromium.org.

[10] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo
Bauer, Lorrie Cranor, and Nicolas Christin. 2018. “It’s not actually
that horrible” Exploring Adoption of Two-Factor Authentication at a
University. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–11.

[11] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and
XiaoFeng Wang. 2014. The tangled web of password reuse.. In NDSS,
Vol. 14. 23–26.

[12] Junhua Ding, Wei Song, and Dongmei Zhang. 2014. An approach for
modeling and analyzing mobile push notification services. In 2014 IEEE
International Conference on Services Computing. IEEE, 725–732.

[13] Duo. 2021. Duo Two Factor Authentication and Endpoint Security.
https://duo.com.

[14] Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick
Kim. 2018. Design and analysis of push notification-based malware
on android. Security and Communication Networks 2018 (2018).

[15] Informa PLC Informa UK Limited. 2021. Researchers
Discover Two Dozen Malicious Chrome Extensions.
https://www.darkreading.com/vulnerabilities-threats/researchers-
discover-two-dozen-malicious-chrome-extensions.

[16] Mohammed Jubur, Prakash Shrestha, Nitesh Saxena, and Jay Prakash.
2021. Bypassing push-based second factor and passwordless authen-
tication with human-indistinguishable notifications. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security. 447–461.

[17] Daniel V Klein. 1990. Foiling the cracker: A survey of, and improve-
ments to, password security. In Proceedings of the 2nd USENIX Security
Workshop. 5–14.

[18] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad
Naveed, XiaoFeng Wang, and Xinhui Han. 2014. Mayhem in the push
clouds: Understanding and mitigating security hazards in mobile push-
messaging services. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. 978–989.

[19] Logmeln Inc. 2021. Lastpass - Password Manager & Vault App.
https://www.lastpass.com/.

[20] Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena. 2021.
Analyzing the Security of OTP 2FA in the Face of Malicious Terminals.
In Information and Communications Security: 23rd International Confer-
ence, ICICS 2021, Chongqing, China, November 19-21, 2021, Proceedings,
Part I 23. Springer, 97–115.

[21] MalwareBytes. 2021. MalwareBytes Cybersecurity for Home and
Business. https://www.malwarebytes.com/.

[22] McAfee. 2021. McAfee Total Protection. https://www.mcafee.com/en-
us/antivirus/free.html.

[23] Microsoft. 2021. Windows 10 Security, Windows Defender Antivirus,
Windows Defender Security Centre. https://www.microsoft.com/en-
us/windows/comprehensive-security.

[24] NTT Security. 2019. Global Threat Intelligence Report.
https://us.nttdata.com/en/-/media/assets/reports/digital-global-
threat-intelligence-report-2019.pdf.

[25] Borke Obada-Obieh, Yue Huang, and Konstantin Beznosov. 2020. The
burden of ending online account sharing. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. 1–13.

[26] PhantomJS Contributors. 2010-2018. PhantomJS- Scriptable Headless
Browser. https://phantomjs.org.

[27] PingIdentity. 2023. Identity Security for digital Enterprise | Ping ID.
https://www.pingidentity.com/en.html.

[28] Jay Prakash, Clarice Chua Qing Yu, Tanvi Ravindra Thombre, Andrei
Bytes, Mohammed Jubur, Nitesh Saxena, Lucienne Blessing, Jianying
Zhou, and Tony QS Quek. 2021. Countering Concurrent Login Attacks
in “Just Tap” Push-based Authentication: A Redesign and Usability
Evaluations. In 2021 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 21–36.

[29] Ken Reese, Trevor Smith, JonathanDutson, JonathanArmknecht, Jacob
Cameron, and Kent Seamons. 2019. A usability study of five two-factor
authentication methods. In Proceedings of the Fifteenth Symposium on
Usable Privacy and Security.

[30] Software Freedom Conservancy- Selenium Project. 2021. Selenium
WebDriver. https://www.selenium.dev/projects/.

[31] Sonicwall.com. 2021. Sonicwall Cyber Threat Report.
https://www.sonicwall.com/medialibrary/en/white-paper/2021-
cyber-threat-report.pdf.

[32] Sophos Ltd. 2021. Sophos Home - Cybersecurity made simple.
https://home.sophos.com/en-us.aspx.

[33] Elizabeth Stobert and Robert Biddle. 2014. The password life cycle:
user behaviour in managing passwords. In 10th Symposium On Usable
Privacy and Security ({SOUPS} 2014). 243–255.

[34] Viktor Taneski, Marjan Heričko, and Boštjan Brumen. 2014. Password
security—No change in 35 years?. In 2014 37th International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 1360–1365.

[35] The Daily Swig. 2022. MFA fatigue attacks: Users tricked into
allowing device access due to overload of push notifications.
https://portswigger.net/daily-swig/mfa-fatigue-attacks-users-
tricked-into-allowing-device-access-due-to-overload-of-push-
notifications.

[36] The Hacker News. 2022. Hackers increasingly using
Browser Automation Frameworks For Malicious Activities.
https://thehackernews.com/2022/05/hackers-increasingly-using-
browser.html.

[37] The Secret Security Wiki - Secret Double Octo-
pus. 2021. How does Passwordless Authentica-
tion works? https://doubleoctopus.com/security-
wiki/authentication/passwordless-authentication/.

[38] ThreatPost. 2021. 500 Malicious Chrome Extensions Impact Millions
of Users. https://threatpost.com/500-malicious-chrome-extensions-
millions/152918/.

901



Breaking Mobile Notification-based Authentication ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

[39] Tom Olzak. 2021. Malicious Browser Extensions: Why They Could Be
the Next Big Cybersecurity Headache. https://www.spiceworks.com/it-
security/vulnerability-management/articles/malicious-browser-
extensions/.

[40] Virustotal. 2022. Virustoal-Home.
https://www.virustotal.com/gui/home/upload.

[41] Zhi Xu and Sencun Zhu. 2012. Abusing Notification Services on
Smartphones for Phishing and Spamming.. In WOOT. 1–11.

[42] Zdnet, a Red Ventures Company. 2020. Three million
users installed 28 malicious Chrome or Edge extensions.
https://www.zdnet.com/article/beef-up-microsoft-edge-with-
my-favorite-add-ons/.

[43] Zdnet, a Red Ventures Company. 2022. Malicious
Google Chrome extensions affect 1.4 million users.
https://www.zdnet.com/article/malicious-google-chrome-extensions-
affect-1-4-million-users/.

902


	Abstract
	1 Introduction
	2 Authentication Notifications
	2.1 Notifications in Mobile Device
	2.2 Notification Information

	3 Related Works
	4 Attack Design
	4.1 Threat Model
	4.2 Attack Workflow
	4.3 Implementation Overview

	5 User Study Design
	5.1 Implementation
	5.2 Authentication Attempts
	5.3 Study Metrics
	5.4 Study Protocol

	6 Evaluation and Results
	6.1 Mobile Notification Information
	6.2 User Study Result Analysis
	6.3 Summary of Attack Detectability
	6.4 Detection by Anti-Malware Programs

	7 Discussion & Future Work
	8 Conclusion
	References

