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Abstract—Emotional state leakage attracts increasing concerns
as it reveals rich sensitive information, such as intent, demo -
graphic, personality, and health information. Existing emotion
recognition techniques rely on vision and audio data, which have
limited threat due to the requirements of accessing restricted
sensors (e.g., cameras and microphones). In this work, we first
investigate the feasibility of detecting the emotional state of people
in the vibration domain via zero-permission motion sensors. We
find that when voice is being played through a smartphone’s
loudspeaker or ear speaker, it generates vibration signals on the
smartphone surface, which encodes rich emotional information.
As the smartphone is the go-to device for almost everyone
nowadays, our attack based only on motion sensors raises severe
concerns about emotion state leakage. We comprehensively study
the relationship between vibration data and human emotion
based on several publicly available emotion datasets (e.g., SAVEE,
TESS). Time-frequency features and machine learning techniques
are developed to determine the emotion of the victim based
on speech vibrations. We evaluate our attack on both the ear
speakers and loudspeakers on a diverse set of smartphones. The
results demonstrate our attack can achieve a high accuracy,
with around 95.3% (random guess 14.3%) accuracy for the
loudspeaker setting and 60.52% (random guess 14.3%) accuracy
for the ear speaker setting.

I. INTRODUCTION

Human emotion has found increasing applications in virtual
assistants [1], healthcare [2], education [3], and other emerging
applications driven by Artificial Intelligence (AI). The leakage
of emotional state causes severe privacy issues similar to
those that occur in the vision and audio domains, as i t
reveals rich sensitive information about individuals, such as
intent, demographics, personality, and health information. For
example, psychographic profiling based on emotion Al can
be leveraged to influence political campaigning [4], engaging
in psychological operations rooted in the emotions of voters.
Such emotion information can also be used for discrimination
against individuals with mental illness during the candidate
hiring process and workplace monitoring [5]. Additionally,
the literature has discussed several potential harms associated
with the leakage of emotional state, such as denial of essential
services, risk of harm, and infringement of human rights [6]. It
has also been noted that the general public is largely unaware
[7] of the implications of Al techniques that can track their
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Fig. 1: Overview of emotion eavesdropping from smartphone.

Emotion detection was initially studied in the vision do-
main [3], [8], where facial landmarks provide rich clues about
people’s emotions. The investigation of emotion detection is
now extending to the audio domain through voice analysis,
including the examination of fundamental frequency, formant
jitter, shimmer, and spectral energy in speech. Emotion privacy
leakage through voice can have more severe consequences
compared to vision, as phone calls via smartphones have be-
come the primary means of remote communication. According
to Statista [9], 95% of users rely on phone calls for regular
communication, making it a lucrative target for adversaries.
Recent studies have demonstrated speech eavesdropping using
various techniques, such as voice call recording [10], motion
sensor data recording [11]-[13], network analysis [14], and
external radar systems [15], [16]. However, the potential of
deriving emotions through phone calls, especially using zero-
permission sensors on the phone, remains unexplored.

In this work, we demonstrate the realistic nature of emo-
tional privacy leakage through phone calls. We propose an
eavesdropping attack called EmoLeak that can extract the
speaker’s emotional state from the speech played through
either the loudspeaker (e.g., voice calls, recorded audio,
YouTube videos) or the ear speaker (e.g., voice calls) by
analyzing the zero-permission motion sensors on smartphones.
Previous studies have shown the motion sensor’s eavesdrop-
ping capabilities in speaker and gender identification [17],
speech identification [11], [12], speech reconstruction [18],
and indoor location identification [19]. However, no research
has been conducted on identifying the emotional state of a
speaker using vibrations induced by loudspeakers and ear
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speakers. In this work, we address this gap by designing
an attack and applying classical machine learning and deep
learning approaches to detect the speaker’s emotional state.
An overview of the attack is illustrated in Figure 1.

We analyzed multiple publicly available speech-emotion
datasets, including SAVEE [20], TESS [21], and CREMA-
D [22]. Our study focuses on examining how emotional states
are encoded into the motion sensor readings by the replayed
speech from both the loudspeaker and the ear speaker. To
collect data, we recorded accelerometer readings while playing
audio files from the dataset through the loudspeaker (utilizing
both the top earpiece speaker and the bottom loudspeaker)
and the handheld setting (utilizing only the top ear speaker).
During our experiment, we analyzed vibration data from both
table-top positions (where the phone is placed on a table while
collecting data) and handheld positions (resembling the posi-
tions and gestures people use during a phone conversation).

By analyzing speech regions and extracting features, our
attack is able to infer the speaker’s emotional state by applying
machine learning and deep learning algorithms to the motion
sensor readings. Additionally, we generate spectrograms from
the identified speech regions and utilize them to train a CNN-
based image classifier for classifying different emotions. The
experimental results demonstrate a high level of accuracy
(up to 95.3%) in detecting emotions from the vibration data
induced by speech, as captured by the accelerometer, using
the aforementioned methods. We show that our attack, which
is based on motion sensor data, achieves emotion recognition
performance comparable to that of approaches based on high-
quality audio data. This raises significant privacy concerns, as
our attack eliminates the need to collect explicit audio data,
thereby bypassing the requirement for permissions.

Our designed attack enables an attacker to discern the
emotional state of the caller during a voice call or the speaker
in multimedia content. This information can also be corre-
lated with the emotions of the smartphone owner, potentially
revealing sensitive information about their content preferences
[23].

Our attack extends beyond the loudspeakers to the ear
speaker of smartphones, which is used during handheld con-
versations and produces sounds at much lower volumes.
Typically, these speakers generate sounds ranging from 36
dB to 40 dB, and they generally have little to no effect on
accelerometer readings. However, we have discovered that
certain newer smartphones, such as the OnePlus 7T, have
started employing more powerful speakers instead of the
smaller ear speakers to deliver higher-quality stereo sound
when playing media through the loudspeakers. These speakers
generate sound pressure levels ranging from 42 dB to 46
dB, slightly higher than that of other smartphones, yet still
comfortable for the human ear during a phone conversation.
Our study reveals that speech played from the ear speaker does
have some impact on accelerometer data, and it is possible to
identify speech regions from it (see Figure 4).

Based on our investigation of vibrations generated by both
the loudspeaker and the ear speaker, we propose a novel attack
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EmoLeak for recognizing the emotional state of the speaker.
Importantly, we demonstrate that emotions can be classified
with reasonable accuracy (95.3% accuracy using loudspeakers
and 60.52% accuracy for ear speakers, compared to a random
guess rate of 14.27%) using vibrations induced by speakers on
the accelerometer data. This finding highlights the real threat
of emotional state leakage through motion sensors.

Our Contribution: Our contribution in this research is three-

fold:

1) Eavesdropping Emotion via Smartphone Motion Sen-
sor: A Novel Attack: We have proposed a new attack for
emotion eavesdropping and evaluated its effectiveness by
utilizing motion sensor data to identify speech regions,
extracting time-frequency domain features, generating
spectrograms, and classifying speech emotions using ma-
chine learning and deep learning techniques. 7o the best
of our knowledge, our approach is the first to classify
speech emotions from vibrations caused by smartphone
speakers.
Exploiting Ear Speaker’s Vibration on Motion Sensor
to Detect Emotion: We leverage the recent smartphones
(having stereo speaker feature) with powerful ear speak-
ers to eavesdrop on the emotional state of the speaker
with reasonable accuracy (60.52% accuracy, compared
to a random guess rate of 14.27%). To the best of our
knowledge, this is the first research that demonstrates
the possibility of detecting emotions using only vibrations
produced by the ear speaker.

3) Achieved Reasonable Accuracy in Emotion Detection
Datasets Ofhen Comparable to Audio Domain: Our
experiments have shown impressive results, achieving an
accuracy of up to 95.3% in classifying emotions using
motion sensor data. This level of accuracy is comparable
to that achieved in the audio domain, where the same
dataset has been known to reach up to 99.5% accuracy
[24]-[26]. This suggests that adversaries could potentially
use zero-permission motion sensor data to effectively
detect the emotional state of a speaker during a phone
conversation or audio playback, rather than relying on
audio recordings.

2

~

II. CONTEXT AND PRIOR WORKS
A. Emotion Detection and Associated Risks

Modern artificial intelligence techniques are capable of
identifying the emotional state of a human subject as part of
assistive technology for different purposes (e.g., healthcare,
market research). However, this emotion Al can be exploited
by adversaries who want to gain the private information of a
targeted user. There is a growing concern [27], [28] regarding
privacy leakage without the user’s explicit permission recently
due to the potential misuse of this technology.

Researchers have highlighted the lack of awareness among
the general public regarding the potential misuse of emotional
state leakage to unwanted entities [7]. This technology can
detect mental illness in individuals, raising concerns about
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Fig. 2: Spectrogram generated from accelerometer data during play8ing “Say the word back” through loudspeaker for five different emotion

privacy invasion and discrimination in the workplace during
hiring and evaluation processes, as noted in [5]. Regulatory
commissions, such as the European Commission, have ad-
dressed this issue by drafting regulations [29] and identifying
the use of Al in workplace management as high risk. The
Information Commissioner’s Office of the United Kingdom
has also released regulations on Al-related data protection [30]
that focus on protecting an individual’s rights in organizational
settings and address the possibility of bias and discrimination.

In addition, emotional state leakage without the explicit con-
sent of the user can also be misused to create a psychographic
profile of a targeted individual. This psychographic profile can
be utilized in digital marketing, including political campaigns,
which raises concerns about privacy [4]. This psychographic
profile has the potential to be used as a prediction tool for a
person’s health, economic condition, and personal preferences,
leading to more extensive privacy breaches. Furthermore,
adversaries may exploit sensitive health information, such as
a person’s mental health state, for illicit purposes.

B. Emotion Detection From Speech Data

Researchers have conducted extensive research on emotion
detection using speech data (audio). Generally, popular speech
datasets such as CREMA-D, TESS, RAVDESS, and SAVEE
are employed for this purpose. Researchers extract various
features (e.g., MFCC, spectrogram, statistical features) from
these datasets to train powerful machine learning and deep
learning models, achieving significant performance on this
task. For example, Zeeshan et al. [31] and Pappagari et al.
[32] extract MFCC features from the CREMA-D dataset and
use them as input to a CNN model to detect six different
emotions (Anger, Disgust, Fear, Happy, Neutral, and Sad)
with accuracies of 81.5% and 94.99%, respectively. Other
research works, such as Zhu et al. [33] and Singh et al. [26],
utilize spectrograms of speech data along with CNN models
or SVM+RNN models to achieve accuracies of 79.6% and
71.69% on the CREMA-D dataset, respectively. Additionally,
Gokilavani et al. [34] leverage multiple features (e.g., MFCC,
spectrogram, STFT, and statistical features such as RMS and
zero-crossing rate) and a CNN model to achieve an accuracy
of 99% on the CREMA-D, TESS, and RAVDESS datasets.
These research studies demonstrate that the acoustic signals in
human speech contain valuable emotional information that can
be effectively captured using appropriate techniques such as
feature engineering combined with machine learning or deep
learning models.
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C. Speech Feature Extraction with Smartphone Motion Sen-
sors

Recent research studies have expanded the concept of
speech eavesdropping beyond audio data captured by mi-
crophones to include speech inference based on other sen-
sors, such as motion sensors [17], [18], WiFi [35], and
mmWave [15], [16]. The underlying idea is to detect conduc-
tive vibrations induced by speech playbacks. Notably, Spear-
phone [17] and AccelEve [36] have demonstrated the feasi-
bility of utilizing the built-in motion sensors of a smartphone
to capture vibrations generated by the bottom loudspeaker of
the same device. Since the motherboard is shared by both
the motion sensor and the loudspeaker, it serves as a con-
ductive medium for propagating vibrations caused by speech
playback. These studies have shown promising results in gen-
der detection, speech recognition, and speech reconstruction.
However, the potential for extracting the emotional state of
the speaker from motion sensor readings remains unexplored.
Furthermore, existing attacks require the speech to be played
through the bottom loudspeaker of the phone. In contrast,
we investigate the possibility of recovering emotional states
from speeches played through the top earpiece speaker, which
produces sounds that are inaudible to nearby individuals.

III. EMOLEAK: ATTACK OVERVIEW AND DESIGN

We have designed an attack framework called EmoLeak that
is capable of eavesdropping on a speaker’s emotions using
vibrations induced by smartphone speakers. In this section, we
will provide an overview of the attacker model, its capabilities,
and the design of our attack.

A. Attacker Capability and Threat Model

We assume the attacker can install a benign-looking app on
the target user’s phone, which runs on the Android operating
system, to record and send motion sensor data to remote
adversaries. The installed malicious app can record motion
sensor data from the background without requiring explicit
permission from the user. It can then send the recorded infor-
mation to the remote adversary for further analysis without
leaving any trace. The attacker can capture motion sensor
data in the following scenarios: (a) when the target user is
engaged in a phone conversation using the ear speaker, (b)
when the target user is engaged in a phone conversation using
the loudspeaker, and (c) when the target user is playing a
multimedia audio file through the loudspeaker. Additionally,
the attacker can record multiple conversations or multimedia
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audio files over multiple days to gather more comprehensive
training data.

B. Attack Design and Feasibility Analysis

1) Efficacy of using Accelerometer Data to Detect Speech
Features: Prior research [11], [17] has already conducted
a comparative frequency response analysis of both the ac-
celerometer and gyroscope and found that the accelerometer is
more effective in recognizing speech features compared to the
gyroscope, which exhibits a weaker response. Ba et al. [36]
have provided a detailed analysis, revealing that the gyroscope
demonstrates a lower audio response than the accelerometer.
Additionally, gyroscope-based speech recognition schemes
(e.g., Gyropohone [13]) primarily rely on the shared surface
vibration induced by external speakers, which is not the case in
our experiment. Taking into account these observations from
prior research, we have decided to utilize the accelerometer in
our experiment.
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(a) Spectrogram of word regions while playing recording from TESS
dataset.
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(b) Visual representation of word regions while playing recording from
TESS dataset.

Fig. 3: Visual representation of word regions through spectrogram and
Acceleration Vs. Time Graph

2) Speech Region Selection: We play recorded audio of
actors from publicly available datasets through smartphone
speakers, including both the loudspeaker and ear speakers.
As mentioned earlier, we collect accelerometer data while the
audio is being played and extract the regions where the actual
speech is occurring. Our experiment is conducted in both table-
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(c) Speech region detection from accelerometer data for loudspeaker
setting

Fig. 4: Visual representation of word regions detection in earpiece speaker
compared to loudspeaker setting for same speech data.

top and handheld settings, and we collect speech data from
both scenarios.

In the table-top setting, the smartphone accelerometer data
should not be impacted by any external vibrations or noises
except for the vibration induced by its own speaker. Therefore,
we did not use any filter in this case. However, in the handheld
setting (where data is collected from the earpiece speaker
only), low-frequency noise can be introduced due to hand
and body movement during data collection. In this case,
adding a filter can effectively reduce the speech features in
the accelerometer data, as demonstrated by Zhang et al. in
previous research [37].

To further investigate this, we conducted an information
gain analysis on both time and frequency domain data with
a minimum high pass filter of 1 Hz, as well as without any
filter. Our observations reveal that even a 1 Hz high pass filter
significantly decreases the information gain. The comparative
information gain results are presented in Table I. Based on
the insights gained from this information analysis, we made
the decision not to apply any filtering during the collection
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of time and frequency domain data in order to preserve the
speech features from the accelerometer data induced by the
ear speaker.

Our speech region extraction program is capable of extract-
ing the speech region from raw accelerometer data for both
loudspeakers and table-top settings. The speech region corre-
sponds to the period when a spike in the accelerometer data
is observed, indicating vibration induced by the smartphone
speaker. Figure 4c provides a visual representation of the
extracted speech region from accelerometer data collected in
the table-top position. Our detection algorithm achieves a 90%
extraction rate for speech regions in the table-top position.

For the handheld and ear speaker-only settings, we applied
a high-pass filter of 8Hz solely for the purpose of detecting
speech regions. However, we did not use this filter for extract-
ing time-frequency domain data or generating spectrograms
later in the process. Figure 4 provides a comparative visual
representation of accelerometer data before and after the
application of the high-pass filter in the handheld position.
Since the earpiece speaker produces lower vibration due to its
lower sound pressure, our detection algorithm may not capture
all speech regions as effectively as with loudspeaker data. We
have observed that our detection algorithm is able to extract a
minimum of 45% of word regions from the vibration induced
by ear speakers.

TABLE I: Comparison of information gain of some Time-Frequency features
with no filters and 1 Hz high-pass filter.

. Information gain of Extracted Features
Filter -
min mean max CV power | smoothness
no filter 1.31 1.293 1.265 | 0.994 | 0.903 0.761
1 Hz 0 0 0 0 0.117 0

3) Spectrogram Generation and Time-Frequency Domain
Feature Generation from Speech Region: We have developed
a program that automates the generation of spectrograms for
each extracted speech region. Prior to playing the recorded
audio from the datasets, we organize the audio segments of
the same emotion together and record their respective playback
times. For example, in Dataset A, the recording with the
“Angry” emotion is played from the 10th second to the 112th
second. The program is capable of automatically assigning
labels to the spectrograms of each speech region based on the
recorded playback times.

Our developed program is also capable of extracting time
and frequency domain features from the speech regions that
have been extracted. These features can be used as input
to machine learning algorithms and deep learning models
for emotion detection. Similar to spectrogram generation, we
label the time and frequency domain features using the same
methodology.

4) Efficacy Analysis- Time and Frequency Domain Fea-
tures: The time-frequency features we used are listed in Table
II. To assess the effectiveness of these features, we conducted
an information gain analysis on the TESS dataset. The analysis
demonstrated that all the features listed in Table II exhibit
non-zero information gain in both the table-top and handheld
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TABLE II: Time-Frequency domain features used in this experiment.

Feature List

Min, Max, Mean, Standard Deviation,
Variance, Range, CV, Skewness, Kurtosis,
Quantile25, Quantile50, MeanCrossingRate.
Energy, Entropy, Frequency Ratio, Irregu-
larity K, Irregularity J, Sharpness, Smooth-
ness, SpecCentroid, SpecStdDev, SpecCrest,
SpecSkewness, SpecKurt.
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Fig. 5: Visual representation of CNN used in spectrogram classifier (top) and
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settings, suggesting their potential contribution to emotion
classification.

5) Efficacy Analysis- Spectrogram: We have developed
a spectrogram generator that can generate and label spectro-
grams from the identified speech regions in the accelerometer
data. To assess the effectiveness of spectrograms in classi-
fying emotions, we played the same sentence, “Say the word
’Back’”, spoken by the same actor but with different emotions.
The recorded audio was played using the loudspeaker of the
smartphone (OnePlus 7T) in the table-top position. We identi-
fied the speech regions and generated a spectrogram for each
emotion, as shown in Figure 3. The spectrogram represents
a visual representation of the vibration strength captured by
the accelerometer over time across various frequencies, and
it is expected to exhibit differences for speech with different
emotions. These differences can be observed in Figure 2.

IV. IMPLEMENTATION DETAILS
A. Data collection Tools

1) Accelerometer Data Collection: : We utilize a third-
party Android app called “Physics Toolbox Sensor Suite” [38]
for collecting accelerometer data. The audio for our experi-
ments is obtained from publicly available emotion datasets,
namely, SAVEE, TESS, and CREMA-D. We play the audio
files through the smartphone’s speakers. As previously men-
tioned, we collect data in two different positions: table-top
(using the loudspeakers) and handheld (using the ear speakers).
To exclusively play the audio through the ear speaker, we
employ another third-party Android app called “Mobile Ear
Speaker Earphone” [39], which redirects all audio output to
the ear speaker of the smartphone.
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2) Speech Region Extraction Tools: : We have developed
a MATLAB program for analyzing and preprocessing raw
accelerometer data, which includes an automatic speech region
detection algorithm. In the table-top position and loudspeaker
setting, speech region detection is straightforward by analyzing
the acceleration data, as shown in Figure 4c. However, in the
handheld setting, speech region detection is more challenging.
The impact of the ear speaker on the accelerometer data is
relatively lower due to its design for phone conversations in the
“on-ear” position, resulting in sounds with low sound pressure.
Additionally, in the handheld position, low-frequency noises
can be introduced due to hand and body movements, unlike
in the table-top settings. Thus, to effectively distinguish the
speech regions in the handheld setting, we apply an 8§ Hz
high-pass filter, as illustrated in Figure 4. However, no filter
is used during the feature extraction process, as explained in
Section III-B.

B. Data Analysis Tools

1) Spectrogram Generation: We have developed a MAT-
LAB program that can generate spectrograms from each ex-
tracted speech region. The program also includes functionality
to label each spectrogram image for subsequent classification
tasks. As mentioned earlier, in the handheld setting, we collect
data in one continuous recording. Therefore, during the audio
playback of recordings from the dataset, we group all audio
segments of the same emotion together and record their total
playback duration (e.g., angry speeches played from the 11th
to the 180th second, fear speeches played from the 181st
to the 305th second). The spectrogram generation program
can automatically assign labels to the spectrograms based on
the recorded playback time. Subsequently, we utilize these
spectrograms for emotion classification using a Convolutional
Neural Network (CNN) classifier.

2) Time and Frequency Domain Feature Extraction Tool:
We have also developed another program using MATLAB
to extract time and frequency domain features, as listed in
Table II, from each identified speech region. Unlike during
speech region detection where we utilize an 8 Hz high-
pass filter, we do not apply this filter during the extraction
of time and frequency domain features. This is because the
filter can significantly remove important speech features, as
demonstrated in Table I. The extracted time-frequency domain
features are then used for classifying emotions using both
classical machine learning algorithms and CNN-based emotion
classifiers.

C. Spectrogram-based Emotion Classifier (CNN)

We have used a Convolutional Neural Network (CNN)-
based image classifier for the classification of emotions from
the spectrogram images. We have implemented this classifier
using Python and Keras [40].

1) Preprocessing and Data Preparation: We divided our
labeled generated spectrograms into training and test datasets
using an 80/20 train-test split. Subsequently, we generated
hdf5 files for the train and test datasets and labeled them
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accordingly. Furthermore, we resized each spectrogram image
from the train and test data to (32x32) dimensions, preparing
them to be inputted into the CNN-based image classifier.

2) CNN-based Spectrogram Classifier Details: We em-
ployed a spectrogram-based emotion classifier consisting of
three convolutional layers and three fully connected layers.
The first convolutional layer, which takes (32x32) images as
input, comprises 128 filters and a kernel size of (1,1). The
second convolutional layer contains 128 filters, while the third
layer has 64 filters. To mitigate overfitting, we incorporated
dropout layers with a rate of 0.2 after each of the three
convolutional layers. The activation function “ReLU” was
utilized in all convolution layers. Additionally, we applied
a max pooling layer with a pool size of (2,2) after each
convolutional layer to reduce the spatial dimensions of the
output.

In the subsequent step, we employ a flatten layer to convert
the output into a one-dimensional linear vector, preparing it for
the fully connected layers. Following that, the output is prop-
agated through two fully connected layers, each comprising
32 neurons. A dropout layer with a rate of 0.25 is applied to
the second fully connected layer. Lastly, the output is passed
through a dense layer with the “softmax”™ activation function,
which classifies the spectrogram image into different emotion
classes.

D. Emotion Classification by Time-frequency Domain features

We extract time-frequency domain features from each iden-
tified speech region, as discussed earlier. These features are
used as input for classical machine learning algorithms and
CNN classifiers.

1) Classical ML-based Emotion Classifier: We use Weka
[41], a popular data mining and machine learning tool, to pre-
process time-frequency feature data and classify emotions. Our
time-frequency domain feature extraction program generates
time-frequency features and exports them to an output file. We
clean the generated data by removing invalid entries such as
NaN and blank entries, and prepare the input file with a (.arff)
extension for Weka. We use an 80/20 test split and perform
10-fold cross-validation when using ML classifiers.

2) CNN-based Emotion Classifier: We design and develop
a CNN model to classify emotions from time-frequency do-
main features. We implement the model using Python and
Keras, similar to the spectrogram classifier. The CNN model
takes time-frequency domain features as input and performs
emotion classification based on these features.

As part of preprocessing, we remove invalid data (e.g., NaN,
blank entries) and prepare the final (.csv) file for analysis.
We apply z-score normalization to transform the data into a
standard normal distribution. Our designed model includes five
convolutional layers and one fully connected layer in the CNN
architecture. The first two convolutional layers have 256 filters
each and use the “ReLLU” activation function. We incorporate
a dropout layer with a rate of 0.25 and a Max Pooling layer
with a pool size of 2 after the second convolutional layer.
Additionally, we introduce a batch normalization layer after
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the third convolutional layer, which consists of 128 filters,
to normalize the activation function at each batch. Following
this, we include another dropout layer with a rate of 0.25 and
a max pooling layer with a pool size of 8. The fourth and
fifth convolutional layers consist of 64 filters each and use
the “ReL.U” activation function. Zero-padding is applied to all
inputs in the convolutional layers. A “Flatten” layer is then
used after the five convolutional layers to convert the output
into a linear vector, preparing it for the fully connected layer.
Finally, we employ a fully connected layer with the “softmax”
activation function, serving as the output layer for emotion
classification.

V. EXPERIMENT OUTCOME AND EVALUATION

A. Smartphone and Dataset Selection

We have chosen a diverse range of smartphones for our
evaluation, including the OnePlus 7T (Android 11.0), OnePlus
9 (Android 13.0), Google Pixel 5 (Android 13.0), Samsung
Galaxy S21 (Android 13.0), Samsung Galaxy S21 Ultra (An-
droid 13.0), and Samsung Galaxy S10 (Android 12.0). All
the smartphones used in our experiments are equipped with
stereo speakers, as claimed by their respective manufacturers.
These smartphones feature powerful speakers positioned both
at the top (ear speaker) and bottom (loudspeaker) of the device,
capable of producing sounds of similar quality and sound
pressure.

We have utilized the SAVEE [20] dataset, which consists
of 480 speeches from 4 native English male speakers (120
speeches per speaker). This dataset encompasses seven differ-
ent emotions: anger, disgust, fear, happiness, neutral, sadness,
and surprise. We have employed the OnePlus 7T and Google
Pixel 5 smartphones to collect data from the audio recordings
of the SAVEE dataset.

We have also utilized the TESS (Toronto Emotional Speech
Set) dataset [21], which consists of 2800 speeches from
two female actors. These speeches encompass seven different
emotions: anger, disgust, fear, happiness, pleasant surprise,
sadness, and neutral. We have employed five smartphones
(OnePlus 7T, Google Pixel 5, Samsung Galaxy S10, Samsung
Galaxy S21, and Samsung Galaxy S21 Ultra) to gather and
assess the audio data from the TESS dataset.

Another emotion dataset we have utilized is the CREMA-
D (CRowd-sourced Emotional Multimodal Actors Dataset)
dataset, which comprises 7442 audio-visual clips. For our
purposes, we have specifically collected the audio clips, which
include speeches from 91 actors representing diverse regions.
In contrast to the other two datasets, CREMA-D contains
speeches with six emotions: anger, disgust, fear, happy, neu-
tral, and sad. For data collection using this dataset, we have
exclusively employed the Samsung Galaxy S10 smartphone.

We have utilized all of the datasets to evaluate attacks in
the loudspeaker and table-top settings. However, we have only
used the SAVEE and TESS datasets for assessing the ear
speaker setting.
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TABLE 1II: Experiment results using SAVEE dataset (Random
Guess=14.28%)
. Accuracy Accuracy
Method Classifier (OnePlus 7T)  (Pixel 5)
Time and Logistic 53.77% 44.44%
Frequency
Domain multiClassClassifier 51.85% 52.97%
Features
trees.Imt 51.58% 53.00%
CNN 46.98% 44.18%
Spectrogram  CNN 39.16% 35.38%

B. Experimental Approach

We collected accelerometer data while playing audio in
two different settings. In the table-top setting, we placed the
smartphone on a wooden table and set the volume to the
maximum level, simulating a phone conversation or media
playback through the loudspeaker. On the other hand, in the
handheld setting, we collected ear speaker data while holding
the smartphone in a typical handheld position, emulating the
attack scenario where an attacker can capture accelerometer
data induced by the ear speaker during a phone conversation.
In the handheld setting, we collected all the data in a contin-
uous manner to minimize the influence of body movement-
induced vibrations on different segments of the data.

C. Emotion Recognition in Loudspeaker Settings

TABLE 1V: Experiment
Guess=16.67%)

results using CREMA-D dataset (Random

Accuracy (Sam-

Method Classifier sung Galaxy S10)
Time and Logistic 58.99%
Frequency
Domain multiClassClassifier 58.51%
Features

trees.Imt 58.99%

CNN 60.32%
Spectrogram CNN 53%

For the SAVEE dataset, we used the OnePlus 7T and Google
Pixel 5 smartphones to collect accelerometer data. By utilizing
extracted time-frequency domain features, we employed clas-
sical machine learning algorithms to classify emotions. This
approach yielded an accuracy of 53.77% for the OnePlus 7T
device. Furthermore, we employed a time-frequency domain-
based convolutional neural network (CNN) for emotion clas-
sification, achieving an accuracy of 46.98%. Additionally, we
generated spectrograms from the identified speech regions and
employed a CNN image classifier for emotion classification,
resulting in an accuracy of 39.16%. The detailed results of
our emotion recognition on the SAVEE dataset in the audio
domain are provided in Table III. Moreover, in Table VII,
we present a comparison of our results with those of other
previous studies that utilize the SAVEE dataset for audio
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TABLE V: Experiment results using TESS dataset (Random Guess=14.28%)

Accuracy Accuracy Accuracy
. Accuracy Accuracy (Samsung
Method Classifier (OnePlus 7T) (Samsung (Pixel 5) (Samsung Galaxy  S21
Galaxy S10) Galaxy S21)
Ultra)
Time and Logistic 94.52% 78.84% 73.93% 85.79% 82.15%
Frequency
Domain multiClassClassifier 91.32% 71.80% 71.75% 84.46% 81.65%
Features
trees.Imt 94.23% 72.15% 78.48% 87.04% 84.47%
CNN 95.3% 83.2% 82.62% 88.49% 84.38%
Spectrogram CNN 89.44% 85.37% 80.92% 83.51% 85.74%

domain emotion recognition. While recent works in audio
domain emotion detection exhibit significantly better accuracy,
our approach utilizing accelerometer vibrations demonstrates
reasonable performance, achieving approximately four times
better accuracy than random guessing for the SAVEE dataset.

We utilized five smartphones for the TESS dataset in both
data collection and analysis. By employing extracted time-
frequency domain features in machine learning algorithms, we
achieved the highest accuracy of 94.23% using the logistic
classifier with the OnePlus 7T device. Additionally, utilizing
a CNN as the classifier with time-frequency domain features,
we obtained an accuracy of 95.3% (compared to a ran-
dom guess accuracy of 14.28%). Furthermore, by generating
spectrograms for each speech region, our spectrogram-based
image classifier achieved an accuracy of 89.44% in classifying
emotions from the TESS dataset. Other devices also exhibited
decent performance with the TESS dataset. Specifically, the
Samsung Galaxy S10, Google Pixel 5, Samsung Galaxy S21,
and Samsung Galaxy S21 Ultra devices achieved maximum
accuracies of 85.37%, 82.62%, 88.49%, and 84.47%, respec-
tively. A detailed breakdown of the results is provided in Table
V, and the confusion matrix for the OnePlus 7T smartphone
is shown in Figure 6a. Moreover, we present a comparative
analysis with previous works in the audio domain in Table VII,
which demonstrates that the performance of the accelerometer
in detecting emotions (i.e., 95.3%) is nearly equivalent and
comparable to state-of-the-art emotion classification methods.

For the CREMA-D dataset, we exclusively utilized the
Samsung Galaxy S10 during data collection and evaluation.
Among our evaluation methods, classical machine learning
(ML) algorithms employing the time-frequency domain fea-
tures, achieved an accuracy of 58.99% in classifying emotions
using the logistic and tree.Imt classifiers, as presented in
Table IV. Additionally, using a CNN classifier with time-
frequency domain features resulted in an accuracy of 60.32%.
We also employed a CNN-based image classifier for the
generated spectrograms, which yielded a maximum accuracy
of 53%. Overall, the performance of emotion classification
using vibration-induced accelerometer data demonstrates a
reasonable level of accuracy (60.32%, compared to a random
guess accuracy of 16.77%) in comparison to recent improve-
ments in audio domain emotion detection using the CREMA-D
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dataset (as shown in Table VII).

D. Emotion Recognition in Ear Speaker Settings

We use the SAVEE and TESS datasets to evaluate the feasi-
bility of an emotion eavesdropping attack utilizing vibrations
induced by the ear speaker in the accelerometer. We collect
data in the handheld position during phone conversations,
and to mitigate the impact of body and hand movement on
accelerometer data, we gather all the data for a particular
dataset at one go. For ear speakers, we extract only time
and frequency domain features and use both classical machine
learning algorithms and CNN to classify them.

We collected accelerometer data from the SAVEE dataset
audio played on the ear speaker using OnePlus 7T and OnePlus
9 smartphones. We then evaluated the data using classical
machine learning algorithms. The results showed a maximum
accuracy of 56.25% for OnePlus 7T and 58.40% for OnePlus
9 smartphones for the SAVEE dataset, with a random guess
accuracy of 14.28% (corresponding to the seven emotion
classes). By utilizing CNN as the classifier, we observed
an improvement in accuracy for the OnePlus 9 smartphone,
achieving 60.32% accuracy. For the OnePlus 7T phone, we
observed an accuracy of 51.11%. These results demonstrate
similar accuracy in classifying emotions compared to the
loudspeaker setting.

For the TESS dataset, we used both the OnePlus 7T and
OnePlus 9 smartphones to collect and evaluate data. Using
classical machine learning algorithms and extracted time-
frequency domain features, we achieved a maximum accuracy
of 59.57% for emotion classification with the random forest
classifier. The corresponding confusion matrix is presented in
Figure 6b. When employing a CNN-based classifier, we ob-
tained an accuracy of 54.82% for the OnePlus 7T smartphone.
Although the accuracy is lower than that of the loudspeaker
setting, it still demonstrates a significant improvement of 4X
compared to random guessing (14.28%). The training loss
versus validation loss and training accuracy versus validation
accuracy graphs are shown in Figure 7c¢ and Figure 7d,
respectively.

E. Summary of Results

In this work, we assess an attack scenario where an attacker
can collect accelerometer data without requiring any permis-
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(a) Confusion matrix generated after classification of time-frequency feature
generated from TESS dataset (Loudspeaker Scenario).

Angry Disgust Fear Happy Neutral :Iuer:s::: Sad

206 0 0 1 8 4 12 Angry
1 159 22 8 15 23 13 Disgust
0 31 102 5 16 7 7 Fear
4 20 9 141 7 10 16 Happy
12 39 20 5 71 19 25 Neutral
6 34 10 6 21 53 a0 | gon
23 14 15 12 19 25 132 Sad

(b) Confusion matrix generated after classification of time-frequency feature
generated from TESS dataset for ear speaker scenario (10-fold cross validation
is used).

Fig. 6: Confusion matrix generated after emotion classification using time-frequency features from TESS dataset (using OnePlus 7T device).

TABLE VI: Experiment results generated in ear speaker setting (Random
Guess=14.28%).

SAVEE TESS
Accuracy Accurac Accuracy
Method Classifier (OnePlus (OneP! y 9) (OnePlus
7T) crius 7T)
. Random
Time and 53.12% 58.40% 59.67%
Forest
Frequency
Domain RandomSubspace 56.25% 54.83% 55.45%
Features
trees.Imt 49.11% 53.76% 53.03%
CNN 51.11% 60.52% 54.82%

sion from the smartphone. This data is then utilized to detect
the emotional state of the user, either from phone conversations
or recorded audio.

In the case of the TESS dataset, our observed accuracy
(95.3%) is comparable to the recently reported improved
method of emotion detection from the audio domain (highest
99.57%) in the loudspeaker setting. For the SAVEE and
CREMA-D datasets, our achieved accuracy in the loudspeaker
setting (53.77% and 60.32% respectively) is reasonable com-
pared to recently reported emotion detection from the audio
domain (91.7% and 94.99%). Furthermore, our results demon-
strate a significant 4X improvement in detecting emotion
compared to random guessing rates (14.28% and 16.77%
for the SAVEE and CREMA-D datasets respectively). These
findings indicate that an attacker can exploit a zero-permission
motion sensor to recognize emotions with an acceptable level
of accuracy.

For the ear speaker setting, both the SAVEE and TESS
datasets exhibit a significant 4X improvement compared to
random guessing rates (achieving the highest accuracies of
60.32% and 59.67% respectively). It is worth noting that ear
speakers are typically characterized by lower sound pressure
and have a negligible impact on accelerometer data. However,
recent smartphone trends indicate a growing number of devices

% (;I'raining Loss vs Validation Loss

Training Accuracy Vs. Validation Accuracy
10

—— Training B eSS
~—— Validation

Accuracy

— Training
' —— validation
0 10 20 30 40 0 10 20 30 40
epoch epoch
(a) Emotion recognition loudspeaker (b) Emotion recognition
training loss Vs. validation loss for loudspeaker  training  accuracy
TESS dataset. Vs. validation accuracy for TESS
dataset.

3 ooTrainin Loss vs Validation Loss Training Accuracy Vs. Validation Accuracy
v —— Training

175 —— Validation

—— Training
—— validation

0 20 40 60
epoch epoch

20 40 60

(d) Emotion recognition ear speaker
training accuracy Vs. validation ac-
curacy for TESS dataset.

(c) Emotion recognition ear speaker
training loss Vs. validation loss for
TESS dataset.

Fig. 7: Emotion Recognition training and validation accuracy graph using
CNN using Time-Frequency Domain Features

incorporating stereo speakers, utilizing both the top ear speaker
and bottom speaker for enhanced audio output. This configu-
ration does have a slight impact on the accelerometer, and our
speech detection approach can successfully identify more than
45% of speech regions from it. These findings suggest that it
is indeed possible to detect emotion with a satisfactory level
of accuracy.

VI. DISCUSSION AND FUTURE DIRECTIONS

A. Android limitation on Sampling Rate

To protect potentially sensitive user information, if the app
targets Android 12 or higher, the system will limit the data
refresh rate for certain motion and position sensors. In light
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TABLE VII: Summary Results

Vibration Domain

Datasets Audio Domain (Previous Works)

(EmoLeak)
e
awwo wos R R

of this, we have conducted the Android restriction (200 Hz
sampling rate) testing in our case. For the TESS dataset and
loudspeaker setting, we accomplished an 80.1% accuracy for
200 Hz data. Nevertheless, for the same device with a default
sampling rate, we achieved the highest accuracy at 95.3%. The
observations indicate that although accuracy was scaled down
a bit, it was still a greater than 5X improvement compared to
random guessing (14.3%).

B. Risk Mitigation Strategies

The use of smartphone accelerometer data collected through
speaker-induced vibrations to eavesdrop on emotional states
poses a significant risk to the privacy and security of sen-
sitive health information. To mitigate this risk, it is crucial
for smartphone operating system designers to implement a
requirement for obtaining users’ prior consent before accessing
and utilizing motion sensor data. Currently, Android requires
user consent for third-party apps to collect motion sensor
data with a sampling rate higher than 200 Hz. However,
our research suggests that this requirement alone may not
be sufficient to fully protect against emotion eavesdropping.
As such, we recommend implementing stricter limitations on
sensor data collection and requiring explicit user permission
for any such data collection to occur. Smartphone designers
and manufacturers can consider the hardware design and
positioning of the motion sensor as a mitigation approach.
This can include relocating the motion sensor away from all
speakers of the smartphone, as well as incorporating vibration-
absorbing materials around motion sensors to reduce the
impact of speaker vibrations on sensor data.

C. Limitation of Emotion Detection using Motion Sensors

Our evaluation approach has certain limitations, one of
which is the limited scope of emotions that are assessed. Our
selected dataset only covers a restricted range of emotions and
does not consider more complex emotions (e.g., ambivalence,
envy, nostalgia, guilt, melancholy). Additionally, the distance
between the accelerometer and the speaker can vary based
on the smartphone’s design. This variation could lead to
performance variations in detecting emotions, which is also
an important factor to consider. Moreover, our approach is
susceptible to external noise factors in the environment that
may impact the accelerometer data. Particularly in ear speaker
scenarios, body movements during conversations can affect
the accuracy of emotion detection. Furthermore, smartphone
manufacturers may utilize different models of motion sensors,

which could have varying levels of sensitivity. This can result
in performance discrepancies while detecting emotions.

D. Future Research Directions

Researchers can investigate the accuracy of emotion de-
tection using smartphone motion sensors by expanding the
diversity of datasets, involving real-world participants, and
incorporating a broader range of complex emotions. Addition-
ally, they can develop more efficient machine learning and
deep learning models with enhanced accuracy rates. To gain
a more comprehensive understanding of emotion detection,
researchers can also test in various environments (i.e., indoor
or outdoor) and explore similar vulnerabilities in other smart
devices and wearables.

VII. CONCLUSION

In conclusion, this research explored the potential privacy
risks associated with zero-permission motion sensors in de-
termining a person’s emotional state through eavesdropping
using the motion sensors of their smartphones. By utilizing
the in-built motion sensors, an adversary can potentially gather
information about a person’s emotional state. Our research
investigated the feasibility of determining the speaker’s emo-
tion from vibration data induced by loudspeakers and earpiece
speakers, achieving a reasonable accuracy of up to 95.3% in
emotion detection. This research opens up opportunities for
further exploration of eavesdropping on non-semantic features
of speech using motion sensors and emphasizes the need for
additional research on protecting users’ privacy.
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