
Press @$@$ to Login: Strong Wearable Second
Factor Authentication via Short Memorywise

Effortless Typing Gestures

Prakash Shrestha*

Equifax Inc.

prakash.shrestha@equifax.com

Nitesh Saxena
University of Alabama at Birmingham

saxena@uab.edu

Diksha Shukla�

University of Wyoming

dshukla@uwyo.edu

Vir V. Phoha
Syracuse University

vvphoha@syr.edu

Abstract—The use of wearable devices (e.g., smartwatches) in
two factor authentication (2FA) is fast emerging, as wearables
promise better usability compared to smartphones. Still, the
current deployments of wearable 2FA have significant usability
and security issues. Specifically, one-time PIN-based wearable
2FA (PIN-2FA) requires noticeable user effort to open the app
and copy random PINs from the wearable to the login terminal’s
(desktop/laptop) browser. An alternative approach, based on one-
tap approvals via push notifications (Tap-2FA), relies upon user
decision making to thwart attacks and is prone to skip-through.
Both approaches are also vulnerable to traditional phishing
attacks.

To address this security-usability tension, we introduce a
fundamentally different design of wearable 2FA, called SG-
2FA, involving wrist-movement “seamless gestures” captured near
transparently by the second factor wearable device while the
user types a very short special sequence on the browser during
the login process. The typing of the special sequence creates a
wrist gesture that when identified correctly uniquely associates
the login attempt with the device’s owner. The special sequence
can be fixed (e.g., “@$@$”), does not need to be a secret,
and does not need to be memorized (could be simply displayed
on the browser). This design improves usability over PIN-2FA
since only this short sequence has to be typed as part of the
login process (no interaction with or diversion of attention to
the wearable and copying of random PINs is needed). It also
greatly improves security compared to Tap-2FA since the attacker
can not succeed in login unless the user’s wrist is undergoing
the exact same gesture at the exact same time. Moreover,
the approach is phishing-resistant and privacy-preserving (unlike
behavioral biometrics). Our results show that SG-2FA incurs only
minimal errors in both benign and adversarial settings based on
appropriate parameterizations.

I. INTRODUCTION

Mobile app-based two-factor authentication (2FA) is widely

deployed on the Internet today. This approach works by verify-

ing something the user knows, i.e., a password, and something

the user possesses i.e., a general-purpose device, traditionally a

smartphone, running the app. In contrast with hardware token

based 2FA (e.g., YubiKey[1], RSA SecureID [32], and FIDO

U2F [50]), the use of app-based 2FA helps improve usability

and deployability of 2FA. A commonly used app-based 2FA

scheme, such as Google 2SV [17] and Celestix’s HOTPin [6],

requires the user to enter his password and copy a random

*Work done at UAB �Work done at SU

and one-time PIN (OTP) from the mobile app over to the web

browser of the authentication terminal (laptop/desktop). One-

tap approach for two-factor authentication (Tap-2FA), such as

Duo Push [11] and Google Prompt [18], is another variant of

app-based 2FA that helps improve the usability of 2FA as the

user simply needs to tap on a login attempt push notification

shown on the app’s interface.

Rapid Emergence of Wearable 2FA: Beyond smartphones,

mobile apps of these 2FA variants are being rapidly deployed

and gaining momentum on wrist-worn wearables, referred to

as Watch-2FA (e.g., Google Auth [19], SAASPASS [34] for

PIN-2FA, and Google Prompt [36], Duo Push [10] for Tap-

2FA variant). Sample snapshots of these deployed Watch-2FA

schemes are presented in Figure 1a and 1b. Wrist-wearables,

especially the smartwatches, are a compelling platform to

implement 2FA since these devices are gaining popularity in

the consumer space [14], and they make 2FA schemes easier

for the user compared to the smartphone. Unlike the phone,

since wrist-wearables may always remain attached to the user,

the user does not need to explicitly look for/reach out to

the watch, thereby making the use of 2FA schemes relatively

easier for the user compared to the 2FA schemes used with

the phone.

Fundamental Problems with Current Deployments: Un-

fortunately, the aforementioned Watch-2FA schemes still ei-

ther require significant user-effort (PIN-2FA) or are prone

to user errors, negligence or click-through (Tap-2FA). PIN-

2FA requires the user to interact with the watch, thereby

diverting the user’s attention away from the authentication

terminal. Specifically, PIN-2FA requires the user to launch

the app installed on the watch, read and copy the OTP to

the authentication terminal’s browser. The small-form factor

of watches may make it difficult for the user to launch the app

and read the OTP, and hence negatively impact the usability

of 2FA. The reduced usability may discourage users from

adopting this approach in practice, similar to phone-based PIN-

2FA [12], [8], [22].

While Tap-2FA makes the process easier for the user, it still

involves user-watch interaction More critically, in Tap-2FA,

the user is supposed to read and verify the login information

shown on the login prompt (e.g., service name, account name,

71

2021 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2021, Prakash Shrestha. Under license to IEEE.
DOI 10.1109/EuroSP51992.2021.00016

20
21

 IE
EE

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

14
91

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

51
99

2.
20

21
.0

00
16

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

(a) PIN-2FA (b) Tap-2FA (c) SG-2FA

Fig. 1: Depiction of the watch UIs of two deployed variants of Watch-2FA and SG-2FA. In our proposed SG-2FA scheme, the watch UI is
irrelevant as the scheme requires zero interaction with the watch, and only requires the user to type a short, fixed sequence of characters
on the browser of the terminal.

location, etc.). Unlike the phone, the small-form factor of the

watch may make it difficult for the user to view and read

the crucial login information. Given this, the user is likely

to accept or skip through the login prompt without paying

much attention to the login information. Further, Tap-2FA is

susceptible to user negligence especially when the attacker

attempts to log in around the same time as the user [25]. The

attacker can drop the login notification corresponding to the

users login session so that the user sees only one notification

from the attacker’s login session and is very likely to accept

it thinking it is his own login session’s notification.
Both these Watch-2FA schemes are also vulnerable to

standard phishing attacks just like plain password-based au-

thentication, where the attacker masquerades as a reputable

entity, e.g., via a fake website, to steal the victim user’s login

credentials and later attempts to access the victim’s account

leveraging the stolen credentials.

Our Approach: We believe that the aforementioned Watch-

2FA schemes do not really utilize the full potential and

capabilities of the smartwatches, and are hence prone to these

security and usability problems. In this paper, leveraging the

unique characteristics of the watches (e.g., up/downstream on-

line communication with the web service and onboard motion

sensing) and addressing the above security-usability tension

in current Watch-2FA systems, we introduce a fundamentally

different design of minimal-effort Watch-2FA, called SG-2FA.

The proposed system is based on the user’s unique wrist

motions, a simple sideways character typing gesture, called

the “seamless gestures”1, captured from a wrist-worn device.

SG-2FA uses the knowledge of the password as the first

factor of authentication (like other schemes), whereas wrist

motions captured from the app installed in the user’s wrist-

worn wearable device is used as the second factor.
To make the seamless gestures distinguishable from other

hand gestures exhibited in real-life, SG-2FA design carefully

incorporates a very short sequence of special characters, which

when typed associates uniquely the login attempt with the

device’s owner typing the sequence. This special sequence

does not need to be memorized (and is thus memorywise
effortless [4]), or kept secret by the user, but could rather

be shown to the user on the browser, eliminating the need to

1Short, EAsy and Memorywise effortLESS gestures

interact with the watch and diverting attention away from the

browser. It can also be fixed (constant) across multiple sites

deploying SG-2FA (e.g., “@$@$”), as visualized in Figure 1c.

Via simple inspection, it is clear that the usability of SG-

2FA over PIN-2FA would be better since only a short fixed

sequence has to be typed as part of the authentication process

(interacting with the wearable device and/or copying random

PINs to the web browser are not needed). At the same time,

the security of SG-2FA compared to Tap-2FA is significantly

better. Unlike Tap-2FA, there is no reliance on user diligence,

and user negligence does not translate into successful attacks.

Moreover, SG-2FA is secure against traditional phishing at-

tacks, in contrast to both PIN-2FA and Tap-2FA [20]. In fact,

in SG-2FA, the attacker can not login on behalf of the user

unless the user’s wrist is undergoing the exact same seamless
gestures at the exact same time. SG-2FA is designed to offer:
(1) better usability compared to PIN-2FA (not better security)
and (2) better security compared to Tap-2FA (not better
usability).

Although SG-2FA employs user’s wrist gestures for au-

thentication, it is not a biometric scheme because SG-2FA

does not rely on the user-intrinsic wrist movements. This is

a significant advantage in terms of privacy as no sensitive

information about the individual user needs to be stored on

the server. Although the seamless gestures is not unique to an

individual user, it is different from other user activities such

as walking, standing, playing and typing that enables SG-2FA

to use the seamless gestures for second factor authentication.

Due to the non-unique nature of the seamless gestures, unlike

behavioral biometrics, SG-2FA does not need to build/train a

separate prediction model for each individual user – a generic

model is sufficient.

Our Contributions: Our work brings forth the following

contributions to the field of web authentication:

1) New Wearable 2FA Notion based on Seamless Gestures:
We introduce the idea of strong, privacy-preserving and

low-effort wearable (wrist-worn) second factor authentica-

tion based on the notion of seamless gestures, giving rise

to a concrete instantiation, the SG-2FA system.

2) Design and Implementation of SG-2FA: We design and

implement SG-2FA for the Wear OS and the Chrome

browser. Our design is based on machine learning tech-

72

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

niques, particularly the Random Forest classifier, which

captures seamless gestures based on a total of 144 features

extracted from the recordings of watch’s motion sensors,

accelerometer and gyroscope (sampled at a limiting rate of

200 Hz), embedded in the watch. The seamless gestures

is a simple back-and-forth lateral wrist gesture generated

when typing a special sequence (e.g., @$@$).

3) Evaluation in Benign and Adversarial Scenarios: We

evaluate SG-2FA for authentication errors in both benign

and adversarial settings based on the wrist motion data

collected from 30 volunteering participants while they input

special sequence during the login process. Our results show

that SG-2FA can effectively identify the legitimate users

and block the adversaries with high accuracy (F-Measure

of 99.29% with a special sequence of four character

length) based on appropriate parameterizations. Moreover,

the study participants perceived our SG-2FA system to be

acceptable for use based on the system usability score (i.e.,

73.46). Further, we find that the seamless gestures can be

entered and captured quickly, within just 2 seconds.

Summary of the Main Result: Overall, our work shows that

SG-2FA allows the user to login with low cognitive effort and

offers a high level of security against a wide variety of attacks.

It essentially forces the attacker to login precisely at the same

time as the user logs in and even then the attacker can not

succeed with a high probability. In occasional scenarios, where

the legitimate user is denied access due to detection errors,

SG-2FA can simply fall-back to PIN-2FA, thereby offering

seamless integration with currently-deployed technology, and

still keeping the process low-effort on most occasions and

nearly as secure as PIN-2FA. In sum, all of these features

place SG-2FA at the security level similar to that of PIN-
2FA and the usability level similar to that of Tap-2FA.

II. OUR APPROACH

A. Overview

We consider a laptop/desktop browser-based authentication

system to a remote web-server (WS) and introduce a minimal-

effort Watch-2FA scheme, SG-2FA. In SG-2FA, the knowl-

edge of password constitutes the first login factor while the

user’s wrist-worn wearable device, particularly smartwatch

(W), constitutes the second factor. SG-2FA verifies the user’s

possession of the second factor based on the user’s wrist

gestures generated while providing a short special sequence.

Although 2FA (including SG-2FA) is mostly used for web-

authentication, SG-2FA can be used to authenticate the user

to a laptop or desktop PC.

We consider a smartwatch personal to the user that features

Internet connectivity (either directly or via a companion device

like a smartphone as the proxy) and onboard motion sensing.

SG-2FA requires the user to wear such a watch during the

login process like any other Watch-2FA. It also requires the

user to install an application/token in W, and link to his

account on WS. This one-time operation can be carried out

using existing techniques, for instance, the one used in Google

WWS

W

LP

Fig. 2: A high-level overview of SG-2FA authentication. At login,
the smartwatch/bracelet (W) captures the unique wrist movements
“seamless gestures” while the user inputs a special character se-
quence (scs) shown on the browser (LP) during the authentication
process. W (SG-2FA Engine to be specific) correlates the wrist
movements with scs and makes the decision.

2-Step Verification [17]. The token installed in W records the

wrist motion readings when the user provides a short special

sequence. W then decides whether to accept or reject the

current login attempt based on captured wrist motion readings.

A high-level flow of SG-2FA is shown in Figure 2.

In SG-2FA, during the login process, the login web-page

(LP) of WS generates a short and simple Special Character
Sequence (scs, details are provided later in Section IV) and

displays it to the user. SG-2FA requires the user to provide his

credentials, i.e., his username and password, and scs (shown

on LP) at the time of login. The typing of scs (e.g., “@$@$”)

creates a unique wrist-signature, specifically a simple sideways

character typing gesture, termed as “seamless gestures”, which

is used to authenticate the user. SG-2FA extracts the motion-

segment corresponding to scs from W. If SG-2FA succeeds

to verify the user’s credentials as well as the wrist motion-

segment associated with scs, i.e., seamless gestures, SG-2FA

accepts, otherwise, rejects the login attempt. At its core,

SG-2FA authenticates the user by verifying that the correct

credentials have been supplied and scs has been typed while

wearing the watch.

The current web-authentication systems often provide the

“Remember Me” feature to improve its usability, where the

password is filled automatically. Password managers are also

often used alongside the web-authentication to enhance the

security of the use of passwords while alleviating the cognitive

burden of remembering those passwords by storing them in a

secure encrypted vault. Similar to “Remember Me” feature,

password managers also automatically fill the password for

the user. In such a scenario, the user simply needs to perform

second authentication process by simply typing in a short scs.

B. Comparison with Deployed Schemes

SG-2FA provides unique security and usability advan-

tages compared to prior well-known and deployed Watch-

2FA schemes, i.e., PIN-2FA and Tap-2FA, which we describe

below. Figure 3 presents a brief summary of the security-

usability comparison of SG-2FA with PIN-2FA and Tap-2FA.

73

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Appendix E Table VII expands on this comparison using the

classical framework of Bonneau et al. [4]

Compared to PIN-2FA, SG-2FA neither requires user-watch

interaction nor diverts user’s attention from the PC browser,

mere typing of a short sequence shown on the browser is

sufficient to login. Unlike PIN-2FA, SG-2FA does not require

the user to open the authentication app on the watch and

interact with it. Therefore, the small-form factor of the watch

(that may negatively impact the usability of PIN-2FA) does

not have any effect on the usability of SG-2FA. Since SG-

2FA does not involve the verification code, unlike PIN-2FA,

SG-2FA is memorywise effortless (except of the password,

the user does not need to memorize anything). Further, SG-

2FA incurs a relatively small amount of time (˜5 seconds)

compared to PIN-2FA (>10 seconds) during the authentication

process [22], [30]. Thus, we believe that it is rather obvious

that the usability of SG-2FA will be better compared to PIN-

2FA. Moreover, SG-2FA is secure against standard phishing

attacks to which traditional 2FA schemes are vulnerable as

shown in [20]. In such a phishing attack, an attacker gains

the OTP code generated by the user’s watch by faking an

ongoing malicious activity on the user’s account and asking

the user for the recently generated verification code. When

launching a traditional phishing attack against SG-2FA, an

attacker lures the user into visiting a phishing website and

relays the stolen credentials to the attacker that he supplies

to the legitimate website in real-time. During such phishing

attacks, as the attacker’s typing of scs will not fully overlap

with that of the victim user, SG-2FA can effectively detect and

prevent such attacks.

Tap-2FA requires the user to simply tap on a login attempt

notification shown on the watch for user’s approval. In Tap-

2FA, the user is supposed to read and verify the login infor-

mation shown on the login notification. Therefore, Tap-2FA is

not completely memorywise effortless. Further, the approach

still requires the users to interact with the watch, which may

divert their attention away from the primary point of work, the

PC browser. Moreover, this approach is susceptible to potential

user errors or negligence [30], as users may simply tap/approve

notifications (including the fraudulent ones) without paying

attention (click-through behavior and habituation have already

been widely highlighted in user-centered security literature,

e.g., [13], [44]). In particular, if the attacker attempts to log in

around the same time as the user logs into his account, while

dropping the user’s push notification, user may approve the

attacker session’s notification thinking that he is approving his

own session’s notification [25]. Tap-2FA is also vulnerable to

traditional phishing attacks, where the attacker lures the user to

log into a phishing website, and around the same time attempts

to login. The victim is highly likely to accept the attacker’s

generated login notification thinking that he is approving his

own session’s notification. Unlike Tap-2FA, the security of

SG-2FA does not rely upon the actions or decisions of the end

users. In fact, an attack against SG-2FA cannot succeed until

and unless the time of typing the scs and corresponding inter-

key wrist movements, i.e., scs-motion, of the attacker match

Security

SG-2FA

PIN-2FA
•Require interaction with watch
•Require to type random code
•Prone to standard phishing

•No interaction with watch
•Require to type short sequence
•Resistant to standard phishing and user negligenceTap-2FA

•Require interaction with watch
•Prone to standard phishing and
user negligence

Us
ab

ili
ty

Fig. 3: Security-Usability analysis of three wearable-based 2FA
schemes: PIN-2FA, Tap-2FA, and SG-2FA.

with that of the victim user. However, it is hard to achieve

such overlapping in practice (even with a phishing attack, as

explained above) since the duration of login activity is short

(just a few seconds).

C. User Experience of Special Sequence

The full formal usability study of SG-2FA is beyond the

scope of this paper and could be pursued in future work.

However, the user perception of using the special sequence in

SG-2FA may be considered to be in line with the one in the

studies involving the special sequence. For instance, similar to

SG-2FA, the addition of special sequence, particularly prefix,

to the password has been used in other security systems such

as PwdHash [31] and SPHINX [39]. However, their purposes

of using a special sequence with the password are different

from our SG-2FA scheme. Unlike SG-2FA that uses the special

sequence to generate a unique wrist gesture, PwdHash and

SPHINX use the special sequence to activate their security

schemes. The studies of [31], [39] showed that the users are

generally comfortable with adding a short special sequence

to their password. This result will apply to SG-2FA as well.

Further, PwdHash has been shown to have the usability issue

of the users forgetting to type the sequence during their login

attempts that expose them to a phishing attack [7]. However,

in case of SG-2FA, it would be very rare for the user to forget

typing the sequence since the sequence is displayed on the

browser itself that always reminds them that they have to type

the sequence. Even if the user forgets to enter the sequence, it

does not expose the user to any sort of attacks, it just results

in an occasional false rejection (in which case the user can

attempt the login again with the special sequence added).

III. THREAT MODEL AND ATTACK SETTINGS

Our threat model assumes that all the communication be-

tween the devices involved in SG-2FA, i.e., LP–WS and

WS–W, are protected by cryptographic mechanisms (e.g.,

SSL/TLS) as is done in typical settings. It considers an

adversary who has gained the victim user’s login credential

through phishing attacks, password database leakage, or other

mechanisms. With the knowledge of user’s login credentials,

the adversary attempts to access WS from a remote machine

on behalf of the victim user. The attack is successful if he

can prove the possession of W, which may be possible if the

74

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

victim user happens to be typing the scs, or forced to create

the wrist gesture close to typing scs, at the time the attacker

types the scs, however, is a very unlikely scenario.

Like other 2FA schemes, we assume that the adversary

can neither gain the physical access of nor compromise the

second factor device, i.e., W in our case. If the adversary

obtains the possession of (or has compromised) W desig-

nated for SG-2FA then the security of SG-2FA reduces to

the security of password-only authentication system similar

to other 2FA schemes. We also assume that the adversary

cannot compromise the victim’s PC browser. If the adversary

compromises the victim’s browser, then he can launch a man-

in-the-machine attack and hijack the victim’s session with WS

thereby defeating any 2FA mechanisms.

We further consider a random (untargeted) remote attacker

who attempts to login at random on behalf of the victim user.

We also consider a targeted attacker who attempts to login by

forcing the victim user into creating the wrist gesture close to

scs. In the context of web-authentication, the remote attackers

are more prominent and possess a higher level of threat com-

pared to that of the targeted attackers. Therefore, we consider

a random remote attack setting as a high likelihood threat to

SG-2FA while a targeted attack setting as low likelihood threat

to SG-2FA. Based on the attack setting and various activities

that the victim user could potentially be performing during

the attack, we categorize the potential threats to SG-2FA into

three classes as follows.

1 Threat 1 – Regular Wrist Movements: At an arbitrary

time when a random passive attacker attempts to login, the

user may be performing everyday regular activities such as

walking, standing, resting on a chair, keeping the wrist static

inside the pocket or on the desk, typing or playing a game

on a phone, etc. These are the activities that the users are

most likely to perform during their day-to-day lives. We

consider that the wrist movements during these activities as

regular wrist movements. Since these activities are performed

most frequently by the user and random remote attackers are

more prominent, we consider that the regular wrist movement

activities present a high likelihood threat to SG-2FA.

2 Threat 2 – Text Typing: The user may be using his

computer or laptop (terminal) for official or personal use when

a passive remote attacker attempts to login. An active targeted

attacker may also force (through a phishing attack, targeted

ads) the user to use/type on the terminal at the time he attempts

to login. Since the typing activities are relatively less often

performed by the users compared to their regular activities

and the attack could be either a passive remote attack or

an active targeted attack, we consider the wrist movement

associated with text typing as a medium likelihood threat to

SG-2FA. Out of various activities involved while accessing

the terminals such as playing games, browsing using only the

mouse, the activity that may closely match with scs typing

is the activity of using the keyboard, i.e., the text typing.

So, instead of considering a weak threat model, where victim

user is executing a regular terminal accessing activity when

an adversary attempts to login, we consider relatively strong

threat model, where the user performs continuous typing on

his terminal.

3 Threat 3 – Password Typing: We consider a strong attack

setting where a login attempt from an attacker (remote or

targeted) overlaps with the user’s login attempt. We assume

that an active targeted attacker can fool the user into typing his

credentials through a fake website (i.e., a traditional phishing

attack). Since the attacker has a full control over the phishing

site, he can get the victim to type his password multiple times,

and coax the victim to type the password at the attacker’s

choosen time by controlling the loading time of the site.

We also consider an insider attacker, potentially a disgruntled

friend, or colleague, who knows the user’s login habit and

attempts to log in at the time when the user tries to log

in. However, the login activity is of short duration (merely

a few seconds) and is not performed very frequently. It is

very unlikely that an adversary’s login attempt and user’s login

attempt would overlap in a real time. Even if these login
attempts are overlapped, the attacker needs to match his
scs typing gesture, specifically corresponding inter-key wrist
movements, i.e., scs-motion, with that of the victim user.
In other words, simply matching the start of the scs typing

with that of the victim user is not sufficient to break the

SG-2FA scheme, it requires the exact matching of subsequent

time series corresponding to the key press events while typing

the scs, which is hard to achieve in practice. Therefore, we

consider the attack setting with such overlapping poses a low
likelihood threat to SG-2FA.

IV. SYSTEM ARCHITECTURE AND DETAILS

In this section, we introduce the Special Character Sequence
(scs) used in SG-2FA to verify the second-factor device and

present the concrete steps followed in our design of SG-2FA.

A. Special Character Sequence (SCS)

As mentioned earlier, in our SG-2FA scheme, the user needs

to type in the scs (displayed on LP) during the authentication

process to generate the simple gesture password. Initially, we

tested if password entry alone creates a motion signature that

can be differentiated from user’s all other activities. However,

with our design, we found a high matching score in wrist-

motion between the password entry and the regular text typing,

and cannot be used for authentication purpose. Therefore, we

proceeded with the addition of a short scs on top of the

password in our SG-2FA to incorporate a motion signature

on the password entry. There are certain rules that LP follows

to generate the scs and simple practices to type the scs. They

are described below.

SCS Generation Rules: The scs is formed using only the

special characters located on the left side of the standard

QWERTY keyboard. Specifically, seven special characters –

{˜ , !, @, #, $, %, ˆ} – found on the left side of the keyboard

are used to form the scs. Two characters from this list of

special characters are chosen and used to generate the scs by

75

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Shift-key pressed Shift-key released

#$ $

Fig. 4: Acceleration of user’s wrist when he types scs– “#$#$”.
Left2Right – left-to-right; Right2Left – right-to-left wrist movement.

placing them alternate to each other. The alternate placement

of characters in scs enforces to create a unique wrist motion

that corresponds to either left-to-right or right-to-left wrist

movement. If α and β are the two special characters, they

can form two scs, one starting with α, i.e., αβαβ, and another

starting with β, i.e., βαβα. We consider two parameters while

generating an scs for SG-2FA. First, the length that is the

number of characters in the scs. Second, the distance which

is the number of keys between two keys that forms the scs.

The scs can have three different character lengths – Len3,
Len4, and Len5 for three, four and five character lengths,

respectively. Regarding the inter-key distance between two

special characters (α, β) forming the scs, we consider four

different distances – Dist0 if α and β are side-keys, Dist1, if

there exists one key between α and β on the keyboard, Dist2,

if two keys exists between α and β, and Dist3, if there exist

three keys between α and β.

Simple Typing Rule: As all the special characters are located

at the left side of the keyboard, only left hand wearing W

device should be used to type the scs so that it can capture

the corresponding wrist motion. Since all the special characters

require the “Shift” key to be pressed, while typing the scs
during the password entry, the user can use any of the two Shift

keys (Right-Shift and Left-Shift) available on the keyboard.

We note that no special training is required to type the scs,

mere typing with one hand is sufficient.

Although, in our study, we design and evaluate SG-2FA

geared for the users who wear the watches/bracelets on their

left hands (a commonly occurring setting), it can be setup

alternatively for users who wear their wrist devices on their

right hands. Instead of using the special characters at the left

side of the keyboard, special characters at the right side of

the keyboard can be used to form the scs. The right wrist

motion of the users can now capture the gesture associated

with scs. To identify whether to leverage the left-handed scs
or the right-handed scs, during the registration phase, SG-

2FA requests the user to specify whether he would use right-

or left-hand to provide scs.

SG-2FA Seamless Gesture: Figure 4 shows the acceleration

of user’s wrist when he types the scs– “#$#$” (corresponding

gyroscope signal is shown in Appendix A Figure 9). The

thinner shaded region in the figure shows the key-pressed

LP WS W

Fig. 5: SG-2FA authentication overview. At login, the user provides
the special character sequence (scs) shown on the browser, and
the smartwatch/bracelet (W) captures the user’s wrist-movement. W
then makes decision by correlating the wrist-movement with the scs
and relays the decision to the user via the web-server (WS). The
communication between WS and W happens via the phone as a
proxy in our current implementation.

events, and inter-key wrist movements, i.e., the wrist move-

ment from left-to-right or right-to-left, are represented by the

thicker shaded regions. We denote both of these inter-key wrist

gestures by scs-motion. As shown in the figure, when the user

moves his wrist to type two consecutive keys of scs, it raises

the amplitude of motion signal to a certain level that we use

for the authentication purpose in SG-2FA.

We note that the SG-2FA gesture varies based on the

layout of the keyboard, specifically the location of the special

characters used to create scs, but does not change based

on the model/manufacturer of the keyboard, specifically the

physical hardness of the keyboard. Since most of the standard

keyboards follow a similar layout, changing the model of the

keyboard with different hardness (e.g., the laptop keyboard)

does not have much effect on SG-2FA.

B. Concrete Steps of SG-2FA

The concrete steps followed in SG-2FA are outlined below.

Figure 5 shows a visual outline of the steps.

Step 1 – 3: The user provides his credentials, i.e., his

username and password, on LP and submits them to WS.

WS then verifies the validity of supplied credentials. If WS

cannot verify the legitimacy of user’s credential, it promptly

rejects the login attempt. Once the user’s credentials have been

verified, WS triggers a token (a wear-app) installed on the

watch to record motion sensor data. Then, LP generates and

displays a short, simple and random scs to the user.

Step 4: The user provides scs on LP, which records all the

input events (with timestamps) at the scs field – scs time
information. LP then sends the scs time information to W

via WS. In our current implementation of SG-2FA, we use a

smartphone (P) as a proxy between WS and W. Therefore, WS

first contacts P, which in turn sends the time information to W.

Google Cloud Messaging (GCM) APIs [15], its newer version

Firebase Cloud Messaging (FCM) APIs [16], or Apple Push

Notification (APN) APIs [2] can be utilized to communicate

with P. The phone P has no role except of being a proxy

76

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

in this implementation. In a real-world implementation with

a watch having direct Internet connectivity, there will be no

need for the phone.

Step 5: When W receives scs time information from WS,

it extracts the motion measurements (scs segmentm) corre-

sponding to scs entry. W is embedded with a well-trained

classification model, particularly scs-Verifier, that classifies the

supplied scs segmentm to scs entry or non-scs entry. If scs-
Verifier succeeds to validate the scs segmentm, it accepts the

login attempt, otherwise rejects it. The W device is generally

resource constrained in nature and usually transfer all the

computations to its companion device, i.e., P. For such a W

device, it can stream motion data to P and all decision making

process (i.e., the scs-Verifier) can be implemented on P. Since

SG-2FA relies on the seamless gestures (not on the secret PIN

or password), even if the exact scs sequence that the user is

to type is leaked, compromised or otherwise known to the

attacker, it does not lower the security of SG-2FA.

Step 6: W then relays the decision – “Accept or Reject” –

to WS, which in turn forwards the decision to the user (i.e.,

displays it on LP).

During the login process, LP and W run the time-

synchronization protocol with WS to adjust their local clock

differences with WS.

Fall-back Scenarios: There may exist some scenarios where

SG-2FA may not be able to capture the user’s wrist-motion

when he logs in, and make SG-2FA unable to verify the

legitimacy of the user. For instance, W may not record

and process the motion readings required for verifying the

possession of W as a second-factor. In such scenarios, the

user can always fall back to PIN-2FA implemented using W,

i.e., copy the PIN from W to LP to prove the possession of W

as a second-factor. We note that such fall-back is occasional

and will not lower the security of SG-2FA.

Extensions to Phone based Web-Login or IoT Device
Authentication: Unlike traditional phone-based PIN-2FA, our

SG-2FA scheme can be extended easily to support the 2FA

login from the phone. In such extended SG-2FA, the user

needs to type the scs (displayed on the phone browser). The

wrist gesture while typing scs using a soft keyboard on the

phone could be different from the gesture while typing using a

physical keyboard potentially because they differ significantly

in their size. Further, unlike standard physical keyboards that

are positioned fixed on the surface, phones are generally held

by the users on their hands in various position and orientation.

Therefore, to extend SG-2FA for the phone, a separate scs-
Verifier needs to be built using the scs-motions derived

from typing scs on the phone itself. Moreover, in contrast

to standard physical keyboards that have more or less similar

dimension, the size of the soft keyboard on the phone varies

with the size of the phone’s screen that may impact on the

wrist gesture used in SG-2FA. Besides our current seamless

gestures, different other types of gestures, such as typing

leftmost/topmost key and rightmost/bottommost key back-and-

forth, swipping back-and-forth from left-to-right (or top-to-

bottom) and vice-versa, can also be employed for SG-2FA.

Such seamless gestures captured near transparently by a watch

can also be used for various applications other than 2FA, such

as authenticating the user to a local terminal, IoT devices, or

even unlocking the phone device. Future research is needed to

realize such extensions of SG-2FA.

Real-Time Phishing Attack: The attacker may utilize an ad-

vanced and real-time phishing technique, e.g., Evilginx [46], a

man-in-the-middle attack framework, that captures credentials

and session cookies of a web service on-the-fly to bypass the

security of 2FA. However, stealing credentials and cookies are

not sufficient in the case of SG-2FA. The attacker should be

able to spoof the exact timestamps corresponding to scs typing

in a real time, which is hard to achieve. The attacker can spoof

such timestamps only by manually modifying the respective

JavaScript code block, which would create significant delay

that can be easily detected using a set threshold for the

response. Further, to defeat such a real-time phishing attack,

phishing prevention schemes, such as 2FA-PP [45] and Hack-

saw [42] can be deployed with SG-2FA. 2FA-PP leverages

Bluetooth API that enables the direct communication between

the browser and the second factor device and network latency

measurements to check if the user is indeed connected to the

legitimate server. Although 2FA-PP is originally proposed for

a smartphone, it can be extended to support a smartwatch as

used in SG-2FA. Hacksaw, on the other hand, already uses

watch to re-authenticate the user after he has logged into the

system. It operates by correlating the sequence of events (e.g.,

key presses/releases) with the sequence of events predicted

based on the wrist-motions captured by the watch. Hacksaw

can be deployed only for a short duration at the beginning of

the session.

V. DESIGN AND IMPLEMENTATION

As for a prototype design and implementation, and later

for the testing of SG-2FA, we used Sony Smartwatch 3

SWR50 [43] as a second-factor device, and a desktop PC

with an external US keyboard as a terminal for the user to

simulate the login scenario with SG-2FA. The Sony watch

contains accelerometer and gyroscope sensors. Although only

a standard US keyboard was considered in our study, SG-

2FA can be easily extended to support other keyboard layouts

(e.g., UK, French, German) because scs can be formed using

any two special characters located on the left region from

any location of the keyboard for left-handed wearers (and

right region of the keyboard for right-handed wearers). Our

implementation of SG-2FA consists of following components.

Figure 6 depicts our prototype implementation of SG-2FA.

1 Website and WebServer: We implemented a website

consisting of a simple login form using HTML, Javascript,

CSS, and PHP. The website was hosted in a XAMPP web-

server. The web-server uses Google Cloud Messaging (GCM)

to communicate with the designated smartwatch. Our website

records all the input events on the keyboard. Specifically, it

records the ASCII value of the pressed key, its timestamps

77

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: SG-2FA Prototype Architecture.

when the system dispatches KEY PRESSED and KEY RELEASED

events. It also records the timestamps when the user starts and

ends typing his password. All these recordings are uploaded

to the web-server for the purpose of offline analysis in our

current implementation.

2 Watch Application: We built a Wear-App for an Android

smartwatch. The wear-app installed on the watch records and

streams the motion signals, i.e., accelerometer and gyroscope

readings, to the web-server. These two sensors capture the

device/wrist movement, such as the movement from left-to-

right (or right-to-left). We note that SG-2FA uses the stan-

dard sampling rate (i.e, 200Hz) of the current generation of

smartwatches. Further, SG-2FA records and processes motion

signals for only a short period of time (<6 seconds). Therefore,

power consumption will not be an issue for SG-2FA.

3 Time Synchronizer: As the terminal loading the website

and the watch running the wear-app may have different

local clocks, SG-2FA requires recordings from these two to

be synchronized. For this reason, they run a simple time

synchronization protocol with the web-server while they are

collecting their respective data. This allows the terminal and

the watch to compute the time difference between the local

clocks and the one on the web-server. During the analysis,

the recordings from these devices are adjusted accounting the

clock difference with the web-server.

4 SG-2FA Engine: This unit is the core component of SG-

2FA, which is responsible for verifying the seamless gestures.

It consists of following three components.

• Segmenter: Segmenter receives the password time informa-

tion, the series of input key events, and the motion sensor

readings. The password time information takes the form of

(tpswd strt, tpswd end), where tpswd strt is the timestamp when

the first character of sg pwd is pressed and tpswd end is

the timestamp when the last character is released after being

pressed. Input key events data take the form of:
(key codei, tpres i, trelz i), (key codej , tpres j , trelz j), ..,

where key codei is the ASCII value of the key pressed at time

tpres i and released at time trelez i. The accelerometer data is

of the form:
(ti, xi, yi, zi,mi), (tj , xj , yj , zj ,mi), ...,

where (ti, xi, yi, zi,mi) represents one acceleration data sam-

ple recorded at time ti and xi, yi, zi are instantaneous ac-

celeration along x, y and z axis, respectively. mi shows the

magnitude (SqSum) of the data sample at time ti, which is

computed by
√
xi

2 + yi2 + zi2. The gyroscope data is of the

similar form.
Since the motion sensor measurements vary even for a

small tilt and shift, the readings from each axis of ac-

celerometer and gyroscope, are first mean-normalized (i.e.,

raw values − mean) so that the readings fluctuate around

zero. Segmenter then extracts pswd segmenti, the input-

event segment from the terminal that lies within the time

frame of [tpswd strt, tpswd end]. Within pswd segmenti,
Segmenter looks for the presence of scs based on the possible

ASCII key code combination for scs. If Segmenter does

not find any scs within the pswd segmenti, it rejects the

current password entry. Based on the time when scs starts and

ends, Segmenter extracts scs segmenti (i.e., the input event

segment corresponding to scs) and scs segmentm (i.e., the

motion segment that corresponds to scs entry).
Since scs is composed of multiple special keys, it consists

of several scs-motion (right-to-left or left-to-right) segments

depending on the length of scs. Specifically, an scs consists of

(n-1) scs-motion, where ‘n’ is the length of scs. Based on the

key released timestamp of one key and key pressed timestamp

of the subsequent key in scs segmenti, Segmenter extracts

(n-1) scs-motions from scs segmentm, and feed them to

Feature Extractor.

• Feature Extractor: It receives the motion measurements

from Segmenter in the form of blocks, i.e., the series of

scs-motion. Feature Extractor extracts various features from

each of the scs-motion (details provided in Appendix B Table

II). Specifically, it computes 18 features – minimum, maximum,
mean, median, standard deviation, variance, median absolute
error, inter-quartile range, power, energy, spectral entropy,
autocorrelation, kurtosis, skewness, median frequency, peak
counts, peak-to-peak amplitude, and peak-magnitude-to-rms
ratio – over each series of accelerometer and gyroscope mea-

surements in an scs-motion. We chose these features because

others have used them successfully for activity recognition

[29] and terminal interaction prediction [26]. In total, Feature

Extractor computes 144 feature vectors from each scs-motion.

The feature values were rescaled in the range of [0, 1] with

Min-Max scaling [28]. The scaled feature vectors from each

scs-motion are then supplied to scs-verifier.

• SCS-Verifier: It is a critical component of SG-2FA Engine

that is responsible for deciding whether to accept or reject

78

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

the current login attempt by validating the scs based on the

scs-motion gesture. scs-Verifier consists of a well-trained

classifier for predicting scs-motion based on the motion

measurements. Based on the feature vectors received from

Feature Extractor, the classifier of scs-Verifier predicts if

scs-motion segment is associated with an scs-motion or not.

Based on the number of successful association/verification of

scs-motions corresponding to an scs, scs-Verifier decides

whether to accept or reject the login attempt.

As a classifier for scs-Verifier, we tested several state-of-the-

art machine learning algorithms, e.g., Multilayer Perceptron,

Random Forest, and Support Vector Machine (performance

of the different classifiers is presented in Appendix B Table

III). As Random Forest outperformed all the other classifiers,

we chose Random Forest as a classifier for scs-Verifier. Prior

to training the classifier, we applied one of the supervised

instance reduction techniques, namely spread subsample filter-

ing [47], on the training samples to produce a well-balanced

training dataset and remove the biases that an unbalanced

dataset may create. To train the classifier, we feed it with

the feature vectors extracted from the user’s wrist motion

segment and provide the actual labels. The label ‘1’ represents

scs-motion while the label ‘0’ represents the activities other

than scs-motion. We note that the features associated with the

user’s wrist motion segment are not unique (rather general) to

an individual and do not correspond to biometrics.

VI. USER STUDY DESIGN AND DATA COLLECTION

For our data collection, we recruited 30 voluntary users at

our University. In our experiment, majority of the participants

were 25-35 years old (26) and right-handed (28); 22 male

and 8 female. Most of the participants who own a wrist

device are used to wearing the device on their left-hand. The

demographics of the participants and their wrist device usage

are summarized in Appendix C Table IV. Similar number

of participants and demographics are well-established in lab-

based studies in behavioral biometrics research [9], [37], [49],

[48], which serves to demonstrate the viability of the schemes.

Prior to the experiment, participants were told that the

purpose of the experiment was to study the feasibility of using

wrist gestures while providing the password to authenticate the

user. They were informed that the wrist-gestures, particularly

accelerometer and gyroscope data, and keyboard input events

will be recorded. The experiment and data collection followed

the IRB procedures at our institution.

At the beginning of the experiment, the users were pro-

vided with a pool of passwords that were generated using

SAFEPASSWD [35], an online password generator. Our pool

of passwords consists of 100 unique, strong (marked by

SAFEPASSWD) but easy-to-remember passwords with the

character length ranging between 10 and 14. We asked the

users to choose one of the passwords from the pool that they

used during the entire experiment.

Next, the participants were given the instruction about the

scs generation and scs typing rules as mentioned in Section

IV. Each participant went through a practice session, where

they were asked to pick a random scs, prefix it to the chosen

password to generate sg pwd, and practice typing sg pwd
for multiple times. The purpose of this practice session was to

make them familiar with the use of sg pwd, and with the SG-

2FA in general. In the real-world scenario, the user can use

(prefix or postfix) the scs shown on LP to generate sg pwd.

Further, no special training is required to type the scs, mere

typing with one finger is sufficient.

The participants were then asked to create several scs
considering the combination of scs’s character lengths and

key distance. In total, they were required to create 12 (3 ∗ 4,

three scs lengths, and four key distances) different types of

scs. For each of the key distance and scs length setting, they

were allowed to choose different two special characters. In

our study, most of the times, the participants chose (@, #) or

(@, !) as two special characters to form the scs for Dist0,

while for Dist1, they chose (@, $) or (!, #). Similarly, for

Dist2, they chose (!, $) or (@, %), while they chose (!, %)

or (@, ˆ) for Dist3. Appendix D Table V shows the list of

scs picked by our study participants. They were instructed

to prefix each of the generated scs to the original password

they have chosen earlier to generate 12 different sg pwd for

SG-2FA. Although in real-world implementation of SG-2FA,

it generates the scs by itself and displays it on LP, we asked

users to create scs of their choice so that they become familiar

and comfortable using scs of their choice. Further, SG-2FA

can work with a user-chosen scs that complies with the scs
properties for flexibility purposes (it does not necessitate a

system-chose scs), hence we allowed the participants to follow

this option, which also enabled us to capture scs patterns and

timings (Appendix Table V and VI).

Using each sg pwd, the participant registered to our pro-

totype implementation of SG-2FA. The participants were then

required to login with that particular sg pwd successfully for

10 times. Since the majority of right-handed users usually wear

watch/bracelet on their left-hands (a more common setting,

applicable to our participants also), we tested our SG-2FA with

the watch being worn in the left-hand settings (we discussed

how SG-2FA can be extended to support right-handed wearers

in Section IV-A). We asked the participants to wear the watch

on the wrist of their left hand during the entire study.

We repeated the experiment with each participant three

times. The time gap between two consecutive sessions ranged

between (1-10) days. The order of the experiment for different

scs lengths to each user followed 3x3 Latin square. Each ses-

sion took approximately 15-20 minutes. In sum, we collected

36 data samples (360 correct password entries) per user. On

average, participants took nearly six seconds to type a sg pwd
and less than two seconds to type an scs. The detailed results

are presented in Appendix Table VI.

At the end of the study, we asked the participants to

rate the usability of SG-2FA answering the SUS (System

Usability Scale) questionnaire [5]. SUS is a standard and

reliable tool that is frequently used to measure the usability

of software systems. The SUS survey contains 10 standard

usability questions, each with five possible answers (5-point

79

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Likert scale, where 1 represents strong disagreement and 5

represents strong agreement). The mean SUS score for our

SG-2FA was 73.46 (±8.90), which is representative of above

average (>68) [5] and good (>70) [3], [33] usability.

We also collected data samples for each of the victim

activities mentioned earlier in Section III from randomly

selected 2-5 participants to evaluate our SG-2FA against the

attack setting. We asked two participants to walk for three

minutes in their regular walking style. Similarly, we asked

another two participants to stand or rest/sit on a chair for three

minutes and allow them to move their hands in a natural way.

For two of the participants, we asked to play a game and

type some text provided to them on a phone. We asked two

participants to keep their hands still on the desk and inside

the pocket. Five participants were provided with some wiki

links and were asked to type the text on a notepad for five

minutes while we asked all the 30 participants to pick and type

three passwords (including scs) from the password-pool, three

times each. While performing these activities, we asked the

users to wear the watch to collect the motion sensor readings

corresponding to these activities. Thus, we collected two data

samples for each of the following regular activities – walking,

sitting on a chair, playing a game on a phone, and typing text

on the phone, five data samples for continuous text typing,

and 30 data samples (each containing 9 password entries) for

password typing.

VII. PERFORMANCE AND SECURITY ANALYSIS

A. Evaluation Preliminaries

When evaluating our SG-2FA, particularly scs-Verifier, we

employ Leave-One-Subject-Out (LOSO) approach. In particu-

lar, for a given user, we build the classifier using samples from

all other users. The use of such an approach indicates that the
SG-2FA system does not require any user-specific prediction
model, thereby makes the model user-agnostic and results in a
generic, user-independent classification model for scs-Verifier.
In the real world implementation, scs-Verifier can be trained

using the data samples from either by recruiting a set of certain

users or the people from the developer ends. It does not require

to collect data samples from each individual user of the system.

While applying the LOSO model, we build a separate classifier

for each of the key-distance under consideration to improve

the performance of the scs-Verifier.

Performance Metrics: scs-Verifier of SG-2FA is bi-nominal

in nature. During the classification, data instances from the

users when performing the login task correspond to the pos-

itive class and the data instances when performing activities

other than password-entry correspond to the negative class.

Further, the user may be performing any tasks when an adver-

sary attempts to login on behalf of the victim user. Therefore,

False Rejection (FR) indicates the number of times a login

attempt from the legitimate users is classified incorrectly as

non-legitimate attempts, and False Acceptance (FA) indicates

the number of times a login attempt from the attacker is

incorrectly classified as legitimate login attempt. We use False

Rejection Rate (FRR) to measure the performance of SG-

2FA (scs-Verifier in particular) in benign settings, i.e. while

authenticating a user. FRRs in our evaluation are independent,

i.e., the repeated attempts for authentications are not correlated

in terms of FRR. To measure the performance of scs-Verifier
in adversarial settings (as described in our threat model in

Section II), we use False Acceptance Rate (FAR). We also

use precision, recall, and F-measure (F1-Score) to measure

the overall performance of SG-2FA. Precision measures the

security of the proposed system, i.e., the success rate to

reject the impersonators. Recall measures the usability of the

proposed system, i.e., the accuracy of accepting legitimate

users. F1-score is the harmonic mean of precision and recall.

To make our SG-2FA scheme more accurate, we would like

to have low FRR, low FAR with high values for precision,

recall, and F1-score.

Error-Threshold: It is the number of mis-predictions allowed

while inferring the scs based on the predictions of scs-motion
segments. Given scs of length ‘n’, we consider three different

error-thresholds for scs-Verifier.

• All-Correct: This threshold setting requires all scs-motions
of scs to be predicted correctly.

• One-Error: One mis-prediction out of (n − 1) predictions

of scs-motions is allowed in this setting.

• Two-Error: This threshold setting allows two mis-

predictions out of (n− 1) scs-motion predictions.

All-Correct and One-Error are applicable for all lengths of

scs (Len3, Len4, and Len5) while Two-Error is applicable only

for Len5. Higher the error-threshold, more flexible and usable

will be the scs-Verifier, the SG-2FA as a whole. However, the

high error-threshold may also make the system vulnerable and

less secure. The analysis on the impact of error-threshold on

the performance of SG-2FA in benign and adversarial settings

is presented next.

B. Results

1) Benign Setting: To evaluate the performance of SG-2FA

in a benign setting, we employ the LOSO cross-validation

approach – for each user, we train the Random forest classifier

using 87 data samples (870 password entries) from other users

as positive instances. The training samples also contain neg-

ative instances, which are generated as follows. To create the

negative instances for the training dataset, the scs segmenti,
i.e., the input segment associated with scs, from each of the

users is cross-mapped to the wrist-motion from at least one

of the attack activities and features were extracted from the

cross-mapped scs segmentm. To evaluate the classifier, we

then use three data samples (30 password entries) from the

current user. For each key-distance, we thus train 30 different

classifiers and report the results aggregating classification of

90 data samples (900 password entries).

Figure 7 shows the FRRs for various key-distance and

lengths of scs. The first graph block shows the FRRs when

the error threshold is set to All-Correct while the second block

and the third block show the FRRs when the error threshold

80

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Benign Setting. False Rejection Rate (FRR) of SG-2FA for various scs length and scs key-distance setting with three different
error-threshold settings. “Average” bar on each scs length setting shows the average of FRR over all the key distances.

is set to One-Error and Two-Error, respectively. In the All-

Correct setting, the average FRRs (last bar in each block

of each scs length) ranged between (8-13)%. Relaxing the

scs-Verifier of SG-2FA by setting the error-threshold to One-

Error, the average FRRs got improved to the range of (3-8)%.

When SG-2FA was set to Two-Error for Len5, the average

FRR dropped to 4.90% from 7.41%. We did not find any

significant difference in the performance (in terms of FRR)

of SG-2FA based on the key-distance of the special character

pair used to generate scs. All the key-distances considered

in our evaluation equally performed well. All these FRRs are

based on independent login attempts. The scenario where the

legitimate user re-attempts to login upon failure from the initial

login is not considered in our FRR computation.

Overall, SG-2FA performs well in the benign setting when

using Len3 with One-Error (FRR = 3.38%), Len4 with One-

Error (FRR = 5.04%), and Len5 with Two-Error (FRR =

4.90%) settings. With these settings, SG-2FA also performs

well in the attack settings (low FARs) that we present next.
2) Attack Settings: To evaluate the security offered by SG-

2FA against the impersonation attacks, similar to the benign

setting, we employ the LOSO model. For each user’s attack

sample, we use positive instances from all the users while the

negative instances were taken from other users. Below, we

present the FAR results in different attack settings presented

in Section II.

Threat 1 – Regular Wrist Movements: Appendix Figure

8a shows the FARs of SG-2FA for high-threat setting, where

an attacker attempts to login when a user is performing his

everyday regular activities. With the All-Correct setting, we

achieved the average FARs≤0.5%. The average FARs were

still below 1.6% for all scs lengths when the scs-Verifier was

made flexible by setting error-threshold to One-Error. With the

Two-Error setting, we achieved the average FAR of 0.98% for

Len5. We note that we achieved FAR of 0% with all error-

threshold settings for the attack scenario where the user keeps

his wrist static, the most likely occurring scenario during a

random attack. These results show that the SG-2FA is robust

against such attack settings where users are executing their

regular activities.

Threat 2 – Text Typing: Similar to the high-threat setting,

Appendix Figure 8b shows the FARs of SG-2FA for the

medium-threat setting, where an attacker attempts to login

when a user is typing regular text on his terminal. The FARs

of SG-2FA in such attack settings are lower than for the attack

settings when the user is executing other activities. The FARs

were extremely low (<0.5%) for all the settings except for

Len3 with One-Error setting (around 3%) potentially because

the gesture generated when typing on the keyboard may be

significantly different from the seamless gestures used in SG-

2FA. As can be seen from the figure that SG-2FA is 100%

successful in detecting adversary in such attack scenarios for

most of the settings. The FARs would be even lower when con-

sidering the regular terminal access activities rather than the

continuous typing activities considered in our analysis. These

results indicate that SG-2FA is well capable of identifying

the adversary in such attack settings, where the user is typing

regular texts.

Threat 3 – Password Typing: Appendix Figure 8c shows the

FARs of SG-2FA for low-threats setting, where an attacker

attempts to login when the victim user is also trying to log

into another remote server. Although it is named as low-threat

setting, the underlying attack model represents a very strong

model compared to the attack models considered previously.

In such a threat setting, with All-Correct, we achieved average

FARs of (3.91-11.06)%. When using the One-Error setting, the

average FARs increased to (9.93-26.81)%. Further, with the

Two-Error setting, we achieved average FAR of 19.70% for

Len5. Although SG-2FA achieved high FARs in such an attack

setting, we note that this attack model is extremely strong and

rare to happen in practice. The time when an attacker tries to

login overlaps with the time a user attempts to log in is a very

strong assumption.

These results show that an attack against SG-2FA cannot

succeed unless the timeframe during which the attacker sup-

plies the password (or creates seamless gestures) overlaps with

the timeframe during which the user types the password. How-

ever, such overlapping would be hard to achieve in practice

(even with a traditional phishing attack) since the login activity

is of short duration (merely a few seconds). Even with this

overlapping, the highest success probability of the attack is

<25% because the typing of scs may not overlap and/or their

scs gestures may not completely synchronize. Further, even

considering the rare chances that both the attacker and the

victim type the password at the same time, the attack success

rate would drop significantly, below 25%.

Summary of Results: As mentioned earlier, the low-threat

setting represents the very strong attack model and is ex-

tremely rare to occurs. To evaluate the performance of SG-2FA

well, we present the overall results in two parts – a) including

81

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

0.0

0.5

1.0

1.5

2.0

Len3 Len4 Len5 Len3 Len4 Len5 Len5
All-Correct One-Error Two-Error

FA
R

(%
)

Error-Threshold and scs Length

Dist0 Dist1 Dist2 Dist3 Average

(0.43 - 0.71)
(0.51 – 0.98)

(0.17 - 0.44)
(0.05 - 0.11)(0.13 - 0.27)

(0.34 - 0.6)

(1.30 - 1.81)

(a) High Likelihood Threat – Regular Wrist Movements

0
1
2
3
4
5

Len3 Len4 Len5 Len3 Len4 Len5 Len5
All-Correct One-Error Two-Error

FA
R

(%
)

Error-Threshold and scs Length

Dist0 Dist1 Dist2 Dist3 Average

(0.02 - 0.5) (0.19 - 0.65)0.00
(0.0 - 0.05)

(0.09 - 0.49)

(1.48 - 4.55)

(0.00 - 0.02)

(b) Medium Likelihood Threat – Text Typing

0

10

20

30

40

Len3 Len4 Len5 Len3 Len4 Len5 Len5
All-Correct One-Error Two-Error

FA
R

(%
)

Error-Threshold and scs Length

Dist0 Dist1 Dist2 Dist3 Average

(9.1 - 12.88)
(4.11 -7.77)

(2.53 - 5.28)

(22.86 - 29.70)

(10.52 - 18.46)

(7.05 - 12.69)
(13.87 - 25.22)

(c) Low Likelihood Threat – Password Typing

Fig. 8: Attack Setting. False Acceptance Rate (FAR) of SG-2FA for various scs length and scs key-distance setting with three different
error-threshold settings. “Average” bar on each scs length setting shows the average of FAR over all the key distances.

TABLE I: Summary. The performance – FRR, FAR, Precision, Recall,
and F1-Score (in terms of %) – of SG-2FA for various error-
thresholds and scs length settings while including/excluding the low
likelihood attack setting, specifically Threat 3 – Password Typing.
Highlighted cells show best parameter settings.

Err-
Threshold

SCS
Len FRR FAR Prec. Recall F1-Score

Including Threat 3 – Password Typing (the low likelihood threat)
Len3 2.86 4.71 97.27 95.40 95.97
Len4 4.47 1.93 98.29 97.92 98.03One-Err.
Len5 7.20 1.19 98.54 98.44 98.47

Two-Err. Len5 5.10 2.56 97.28 97.28 97.46

Excluding Threat 3 – Password Typing (the low likelihood threat)
Len3 2.86 2.23 98.20 97.73 97.87
Len4 4.47 0.45 99.30 99.29 99.29One-Err.
Len5 7.20 0.19 99.32 99.33 99.32

Two-Err. Len5 5.10 0.60 99.11 99.09 99.10

the low-threat setting, and b) excluding the low-threat setting.

Table I presents the overall performance of SG-2FA averaged

over all the key-distances of scs. The first part shows the

results when considering the low-threat setting and second

part shows the results without considering it. Highlighted cells

show the results of SG-2FA with the setting, where SG-2FA

performs best in both the benign and the attack scenarios.

The best performance of SG-2FA(in terms of low FAR with

reasonable FRR) was achieved when using Len4 with One-

Error, and Len5 with the Two-Error setting. When considering

the low-threat, with Len4 and One-Error, we achieved FRR

of 4.47%, FAR of 1.93%, and F1-Score of 98.03%. With

Len5 and Two-Error, we achieved FRR of 5.10%, FAR of

2.56%, and F1-Score of 97.46%. The performance of SG-

2FA improved when excluding the low-threat setting. With

the best parameter setting, we achieved FARs≤ 0.6% and

F1-Score> 99%. Further, for a random attacker, it is highly

likely that when he launches the attack, the user will keep his

hand static (e.g., on a desk, inside the pocket, etc.), where we

achieved FAR of 0%.

These results show that SG-2FA (with the best parameter

settings) performs well in both the benign and the attack

settings. It can successfully identify the legitimate user and

detect any fraudulent user with a high accuracy (>99%),

particularly in high and medium threat. We note that the

FRR/FAR of ≤ 5% is considered reasonably good for the be-

havioral authentication systems [26], [49], [27]. Further, most

of the existing authentication systems (e.g., Duo Push, Phone-

call, Duo App Passcode, SMS passcode) have comparable (and

even higher) error rate (≥ 5%) to our approach, potentially

stemming from misreading and mistyping [30]. Moreover, they

require the user to spend quite high time (>10 seconds on

average) during the 2FA ceremony compared to our approach

(˜5 seconds). The performance of SG-2FA could further be

improved with a wrist-device having a much higher sampling

rate (e.g., 500 Hz vs. 200 Hz) for motion sensor recordings,

such as the Shimmer bracelet [38].

Entropy of scs: As we can see from the table, with the One-

Error setting, increasing the length of scs decreases the FAR,

however, it also increases FRR at the same time. With longer

scs length and proper selection of error-threshold (e.g., Two-

82

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

Error with Len5), we could achieve balanced FRR and FAR.

Thus, with the increase of scs length (and a little increase in

latency) and proper error-thresholdization, the overall perfor-

mance (both the security and the usability) of SG-2FA can be

further improved.

VIII. OTHER RELATED WORK

Sound-Proof [22] is a minimal effort phone-based 2FA

system that leverages ambient sounds to detect the proximity

of the second factor (phone) and the browser. However, this

approach is insecure against co-located attackers as well as

remote attackers who can predict the user’s ambient environ-

ment [41]. Moreover, this approach is also insecure against the

remote attackers who can make the second factor device, i.e.,

the phone, create some predictable or already known sounds,

as shown in [40]. Addressing these security vulnerabilities

found in Sound-Proof, Shrestha et al. [41] and Liu et al. [25]

introduced other sound-based low-effort 2FA schemes, called

Listening-Watch and Typing-Proof, respectively. Listening-

Watch is based on a wearable device and browser generated

active speech sounds. The active sounds used in Listening-

Watch may greatly impact the usability of the system. Further,

to prevent proximity attacks, Listening-Watch relies on a rather

low-quality of the smartwatch microphone, which may not

be the case for future watches. In Typing-Proof, during the

login process, the user needs to type a random code on the

computer’s keyboard and the login succeeds if the keystroke

timing sequence from the browser matches with the recorded

keystroke sound on the user’s phone. Typing-Proof relies on

the audio sound generated when the user types a random

code using the keyboard. However, most of the keyboards,

especially those found in the laptops, hardly generate any

sounds. Further, Typing-Proof requires the users to keep their

phones near the login terminal to record the keystrokes.

Typing-Proof may not work well in the scenario where the

user keeps the phone inside his pocket (or bag). In contrast,

SG-2FA has better usability – mere typing of a short special

sequence is sufficient to login, and yet can effectively defeat

both the proximity and remote attackers.

Lewis et al. [24] proposed a motion-based behavioral
biometrics mechanism to authenticate the user/wearer to her

watch. In contrast, SG-2FA offers watch-based web 2FA and is

not a biometric scheme. Further, SG-2FA is privacy-preserving

and does not need a separate prediction model for each

individual user – a generic model is sufficient.

Similar to SG-2FA, ZEBRA [26] and iAuth [23] utilize the

wrist movements to authenticate the user. However, the overall

design and detection algorithms of SG-2FA are completely

different from those of ZEBRA and iAuth. To authenticate

the user, ZEBRA compares the sequence of events it observed

(e.g., typing, scrolling) with the sequence of events inferred

using the wrist-motion readings. Unfortunately, unlike SG-

2FA, ZEBRA is vulnerable to audio-visual based opportunistic

attacks as shown in [21]. iAuth utilizes the phone-usage behav-

ior of the user captured by the user’s wrist-watch and the phone

to authenticate the user. In contrast, SG-2FA authenticates the

user based on the unique hand movement generated while

typing a short sequence. Moreover, the authentication domain

of these two schemes compared to SG-2FA is also completely

different. ZEBRA and iAuth are targeted for the continuous

authentication (de-authentication) for a local machine (e.g.,

shared space computer use) and a smartphone, respectively,

while SG-2FA is targeted for the point-of-entry authentication

to a remote web-server.

IX. LIMITATIONS AND FUTURE WORK

In our study, a single desktop PC with an external keyboard

was used to perform all logins and the watch was worn

on the left hand of the user. Although we believe that the

model/manufacturer of the keyboard, specifically the physical

hardness, does not have much effect on SG-2FA, future work

is needed to explore the impact of physical hardness on the

performance of SG-2FA. SG-2FA was evaluated with only 30

volunteer participants, the majority of them being young with

technical/CS background. A future study with a larger and

diverse pool of users might be needed to generalize the scheme

well. Like other related systems, SG-2FA may require users to

undergo an initial one-time training session for familiarization

purposes. In our study, participants were informed that wrist-

motion data will be collected during the experiment, which

might have influenced their typing behavior. Our study and

evaluation also apply to a setting where a laptop is positioned

on a desk given that the built-in keyboard on the laptop typi-

cally follow the same keyboard layout as an external keyboard

used in our study. However, different orientation of the laptop,

such as placing it on a lap, may impact the performance of

SG-2FA. A rigorous future work is needed to explore more in

this direction. Although we have evaluated SG-2FA against

a simulated phishing attack, one future direction is to study

the feasibility of the real-time phishing-attack against SG-

2FA. Another interesting future direction is to experimentally

evaluate the usability of SG-2FA vs. PIN-2FA and Tap-2FA.

X. CONCLUSION

In this paper, we presented SG-2FA, a strong and low-effort

wearable (watch-based) 2FA scheme based on the notion of

seamless typing gestures. SG-2FA carefully applies machine

learning techniques to identify the unique wrist gesture pro-

duced while typing a short, fixed and non-memorized sequence

of characters on the authentication terminal’s browser. Unlike

PIN-2FA, which requires opening the app on the watch and

copying a random PIN from the watch to the browser, SG-

2FA needs zero interaction with the watch and only a short

sequence (displayed on the browser) to be typed that greatly

improve usability over PIN-2FA. Security compared to Tap-

2FA is also significantly improved since there is no reliance

on the user’s decision making, and the attacker cannot succeed

to login unless the user’s wrist is simultaneously undergoing

the exact same seamless gestures. Notably, unlike behavioral

biometric schemes, our approach is privacy-preserving as it

requires no user-specific information or templates to be stored

on the authentication server.

83

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their feedback on the paper. This work is partially supported
by National Science Foundation (NSF) under the grants: CNS-
1547350, CNS-1526524, CNS-1714807, and CNS-1527795.

REFERENCES

[1] Y. AB., “Yubico — trust the net with yubikey strong two-factor authenti-
cation,” https://www.yubico.com/, 2020, accessed: September 3, 2020.

[2] Apple Inc., “Apns overview,” https://goo.gl/k37dLV, 2018, accessed:
February 1, 2018.

[3] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus
scores mean: Adding an adjective rating scale,” Journal of usability
studies, vol. 4, no. 3, pp. 114–123, 2009.

[4] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 553–567.

[5] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evalua-
tion in industry, vol. 189, no. 194, pp. 4–7, 1996.

[6] Celestix, “Celestix hotpin two factor authentication,” http://www.
celestixworks.com/HOTPin.asp, 2020, accessed: September 3, 2020.

[7] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and
critique of two password managers.” in USENIX Security Symposium,
2006, pp. 1–16.

[8] J. Colnago, S. Devlin, M. Oates, C. Swoopes, L. Bauer, L. Cranor, and
N. Christin, “it’s not actually that horrible: Exploring adoption of two-
factor authentication at a university,” in Conference on Human Factors in
Computing Systems. ACM, 2018, p. 456.

[9] M. Conti, I. Zachia-Zlatea, and B. Crispo, “Mind how you answer me!:
transparently authenticating the user of a smartphone when answering
or placing a call,” in ACM Symposium on Information, Computer and
Communications Security. ACM, 2011, pp. 249–259.

[10] Duo Security Inc., “Duo mobile and apple watch,” 2019, https://guide.duo.
com/apple-watch.

[11] ——, “Easy authentication: Duo security,” https://duo.com/solutions/
features/user-experience/easy-authentication, 2020, accessed: September
13, 2020.

[12] J. Dutson, “User attitudes about duo two-factor authentication at byu,”
2018.

[13] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
8th symposium on usable privacy and security. ACM, 2012, p. 3.

[14] Gartner Inc., “Gartner says worldwide wearable device sales to grow 17
percent in 2017,” https://goo.gl/z7DTz1, 2017.

[15] Google Inc., “Cloud messaging,” https://developers.google.com/
cloud-messaging/, 2019, accessed: February 1, 2018.

[16] ——, “Firebase cloud messaging — firebase,” https://firebase.google.com/
docs/cloud-messaging/, 2020, accessed: February 1, 2020.

[17] ——, “Google 2-step verification,” https://www.google.com/landing/
2step/, 2020, accessed: September 3, 2017.

[18] ——, “Sign in faster with 2-step verification phone prompts,” 2020, Ac-
cessed: Sepetember 3, 2020. [Online]. Available: https://support.google.
com/accounts/answer/7026266?co=GENIE.Platform%3DAndroid&hl=en

[19] C. Group, “Gac tizen client for google authenticator,” 2016, Accessed;
Last accessed 10 February, 2020. [Online]. Available: https://credelius.
com/credelius/?p=120

[20] S. Grzonkowski, “Password recovery scam tricks users into handing over
email account access,” 2015, Accessed; Last accessed 28 October, 2018.
[Online]. Available: https://goo.gl/x8QiZi

[21] O. Huhta, P. Shrestha, S. Udar, M. Juuti, N. Saxena, and N. Asokan,
“Pitfalls in designing zero-effort deauthentication: Opportunistic human
observation attacks,” in Network and Distributed System Security Sympo-
sium, 2016.

[22] N. Karapanos, C. Marforio, C. Soriente, and S. Capkun, “Sound-proof:
usable two-factor authentication based on ambient sound,” in USENIX
Security Symposium, 2015.

[23] W.-H. Lee and R. Lee, “Implicit sensor-based authentication of smart-
phone users with smartwatch,” in Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016. ACM, 2016, p. 9.

[24] A. Lewis, Y. Li, and M. Xie, “Real time motion-based authentication for
smartwatch,” in 2016 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2016, pp. 380–381.

[25] X. Liu, Y. Li, and R. H. Deng, “Typing-proof: Usable, secure and low-
cost two-factor authentication based on keystroke timings,” in Proceedings
of the 34th Annual Computer Security Applications Conference. ACM,
2018, pp. 53–65.

[26] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz, “Zebra:
Zero-effort bilateral recurring authentication,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 705–720.

[27] M. Mohamed and N. Saxena, “Gametrics: towards attack-resilient behav-
ioral authentication with simple cognitive games,” in Proceedings of the
32nd Annual Conference on Computer Security Applications. ACM,
2016, pp. 277–288.

[28] S. RASCHKA, “Minmax scaling - mlxtend,” https://rasbt.github.
io/mlxtend/user guide/preprocessing/minmax scaling/, 2018, accessed:
February 3, 2018.

[29] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition
from accelerometer data,” in Aaai, vol. 5, 2005, pp. 1541–1546.

[30] J. Reynolds, N. Samarin, J. Barnes, T. Judd, J. Mason, M. Bailey,
and S. Egelman, “Empirical measurement of systemic 2fa usability,” in
USENIX Security Symposium, 2020, pp. 127–143.

[31] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger
password authentication using browser extensions.” in USENIX Security
Symposium. Baltimore, MD, USA, 2005, pp. 17–32.

[32] RSA Security, “Rsa securid hardware tokens — two factor authentication,”
2018, accessed: September 3, 2020. [Online]. Available: https://goo.gl/
eSjrFa

[33] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons, “Why johnny still,
still can’t encrypt: Evaluating the usability of a modern pgp client,” arXiv
preprint arXiv:1510.08555, 2015.

[34] SAASPASS, “Unlock your computer and websites with your android
wear smartwatch,” 2016, Accessed; Last accessed 10 February, 2020.
[Online]. Available: https://bit.ly/2SzMN2b

[35] SAFEPASSWD, “Password generator for a strong secure memorable
password,” 2018, Accessed: March 05, 2018. [Online]. Available:
https://www.safepasswd.com/

[36] B. Schoon, “google prompt two-factor authentication now works on
android wear devices for some,” 2016, Accessed; Last accessed 10
February, 2020. [Online]. Available: https://9to5google.com/2016/11/19/
google-prompt-android-wear/

[37] M. Shahzad, A. X. Liu, and A. Samuel, “Secure unlocking of mobile touch
screen devices by simple gestures: you can see it but you can not do it,”
in Proceedings of the 19th annual international conference on Mobile
computing & networking. ACM, 2013, pp. 39–50.

[38] Shimmer Inc., “Wearable sensor technology — wireless imu — ecg —
emg — gsr,” 2020, http://www.shimmersensing.com/.

[39] M. Shirvanian, S. Jareckiy, H. Krawczykz, and N. Saxena, “Sphinx: A
password store that perfectly hides passwords from itself,” in Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference
on. IEEE, 2017, pp. 1094–1104.

[40] B. Shrestha, M. Shirvanian, P. Shrestha, and N. Saxena, “The sounds of
the phones: dangers of zero-effort second factor login based on ambient
audio,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 908–919.

[41] P. Shrestha, , and N. Saxena, “Listening watch: Wearable two-factor
authentication using speech signals resilient to near-far attacks,” in Pro-
ceedings of the 11th ACM Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, 2018.

[42] P. Shrestha and N. Saxena, “Hacksaw: biometric-free non-stop web au-
thentication in an emerging world of wearables,” in Proceedings of the
13th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2020, pp. 13–24.

[43] Sony, “Sony smartwatch 3 swr50,” https://goo.gl/touP3z, 2018, accessed:
February 3, 2018.

[44] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness.” in USENIX
security symposium, 2009, pp. 399–416.

[45] E. Ulqinaku, D. Lain, and S. Capkun, “2fa-pp: 2nd factor phishing preven-
tion,” in Proceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks, 2019, pp. 60–70.

[46] VDA Labs, “Phishing users using evilginx and bypassing 2fa,”
2019, https://vdalabs.com/2019/10/01/phishing-users-using-evilginx-and-
bypassing-2fa/.

[47] Weka, “Spreadsubsample,” https://goo.gl/VGaAw6, 2018, accessed:
February 3, 2018.

[48] H. Xu, Y. Zhou, and M. R. Lyu, “Towards continuous and passive authen-
tication via touch biometrics: An experimental study on smartphones,” in
Symposium On Usable Privacy and Security, SOUPS, vol. 14, 2014, pp.
187–198.

[49] J. Yang, Y. Li, and M. Xie, “Motionauth: Motion-based authentication for
wrist worn smart devices,” in Pervasive Computing and Communication
Workshops (PerCom Workshops), 2015 IEEE International Conference on.
IEEE, 2015, pp. 550–555.

[50] Yubico, “U2f - fido universal 2nd factor authentication — yubico,” https://
www.yubico.com/solutions/fido-u2f/, 2020, accessed: September 3, 2020.

84

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

A. scs Gyroscope Signal

Figure 9 shows the gyroscope signal of user’s wrist when

he types the scs– “#$#$”.

#$ $

Shift-key pressed Shift-key released

Fig. 9: Gyroscope measurements of user’s wrist when he types scs–
“#$#$”. Left2Right – left-to-right; Right2Left – right-to-left wrist
movement.

B. Feature List and Classifiers’ Performance

We used 18 different features over each of the x, y, and z

axis readings and from SqSum of accelerometer and gyro-

scope sensors to classify a scs-motion, which are presented

in Table II.

TABLE II: List of features used in SG-2FA.

Feature Description
Minimum minimum value in signal

Maximum maximum value in signal

Mean mean value of signal

Median median value of signal

Variance variance of signal

Standard deviation standard deviation of signal

MAD median absolute deviation

IQR inter-quartile range

Power power of signal

Energy energy of signal

Spectral Entropy distribution of energy in signal

Autocorrelation similarity of signal

Kurtosis peakedness of signal

Skewness asymmetry of signal

Median frequency median normalized frequency

Peak counts
average number of peaks and
troughs per 100ms in signal

Peak-to-peak peak-to-peak amplitude

Peak-magnitude-to-rms ratio
ratio of largest absolute value to
root-mean-square (RMS) value of signal

As a classifier for scs-Verifier in SG-2FA, we tested several

state-of-the-art machine learning algorithms. To measure the

performance of each classifier, we employed 10-fold cross-

validation approach, and averaged the F-Measure over three

key distances of scs. Table III shows the classification perfor-

mance of the various classifiers that we tested.

C. Demographics and Wrist Device Usage

Prior to the experiment, we asked the participants about

their general demographics and wrist device usage questions.

TABLE III: Classification performance (F-Measure averaged over
three key distances of scs) of various classifiers based on 10-
fold cross-validation approach for three different scs lengths. Note
that the presented performance are for predicting scs-motion (not
to predict scs entry). Highlighted row shows the performance of
classifier that outperformed others.

F-Measure (%)
Classifier

SCS-Len3 SCS-Len4 SCS-Len5

Logistic 96.03 96.89 97.13

Simple Logistic 96.54 97.15 96.92

Multilayer Perceptron 95.39 95.50 95.85

NaiveBayes 74.77 75.85 76.85

RandomForest 97.40 97.89 97.83

RandomTree 94.41 95.27 95.47

SVM 96.11 96.67 96.24

Specifically, we asked participants if they own any wrist-worn

devices (e.g., smartwatch, regular watch, bracelet, or bands),

how often they use it, and in which hand they usually wear

it. The demographics of the participants and their wrist device

usage are summarized in Table IV.

TABLE IV: Demographics and wrist device (e.g., smart or regular
watch, bracelet, bands, etc.) usage of participants (N = 30). ‘CS’
represent ‘Computer Science’.

(a) Demographics

Category
of

subjects

Gender
Male 22

Female 8

Age
<25 2

25-35 26

>35 2

Field
CS 26

Non-CS 4

Handedness
Right 28

Left 2

(b) Wrist Device Usage

of subjects

Wrist device Smart Normal

Own wrist device
Yes 11 21

No 19 9

Regularity of usage
Frequent 5 15

Sometime 6 6

Worn on
Left Hand 10 19

Right Hand 1 0

Both Hands 0 2

D. List of scs and Typing Time of scs & sg pwd.

Table V shows the list of scs chosen by the participants

during the experiment and Table VI shows the average time

to type scs and sg pwd by the participants.

TABLE V: List of SCS chosen by the participants.

SCS
key-distance SCS Chosen by Users

SCS Length = 3 (Len3)
Dist0 !@!, #$#, $%$, $#$, ˜!˜, %ˆ%, @#@

Dist1 #%#, %#%, $ˆ$, @$@, ˜@˜, !#!

Dist2 ˜#˜, #ˆ#, %@%, @%@, !$!

Dist3 @ˆ@, ˜$˜, %!%, !%!

SCS Length = 4 (Len4)
Dist0 %ˆ%ˆ, !@!@, $%$%, #$#$, @#@#, $#$#, ˜!˜!, @!@!

Dist1 #%#%, @$@$, $ˆ$ˆ, !#!#, #!#!, ˜@˜@

Dist2 ˜#˜#, @%@%, #ˆ#ˆ, !$!$, $!$!

Dist3 @ˆ@ˆ, ˜$˜$, !%!%, %!%!, ˆ@ˆ@

SCS Length = 5 (Len5)

Dist0 %ˆ%ˆ%, ˜!˜!˜, @!@!@, @#@#@, !@!@!, $#$#$,
$%$%$, #$#$#

Dist1 #%#%#, ˜@˜@˜, $@$@$, $ˆ$ˆ$, #!#!#, !#!#!,
ˆ$ˆ$ˆ, @$@$@

Dist2 $!$!$, @%@%@, ˜#˜#˜, #ˆ#ˆ#, %@%@%, !$!$!

Dist3 ˆ@ˆ@ˆ, ˜$˜$˜, @ˆ@ˆ@, %!%!%, !%!%!

85

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Average (standard deviation) time taken by the partici-
pants to type scs and sg pwd.

scs Length scs (sec) sg pwd (sec)

Len3 1.21 (0.22) 5.13 (1.38)

Len4 1.51 (0.31) 5.18 (1.35)

Len5 1.89 (0.38) 5.49 (1.35)

E. SG-2FA vs. Other Schemes

We used the framework of Bonneau et al. [4] to analytically

compare SG-2FA with well-known browser compatible TFA

schemes, namely Google two-step Verification (Google 2SV),

and Sound-Proof. The framework of Bonneau et al. considers

several parameters, termed as “benefits”, derived from the

perspective of usability, deployability, and security that an

authentication scheme should ideally provide. The summary

of the overall comparison using the framework of Bonneau et

al. is shown in Table VII

86

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Comparing SG-2FA against PIN-2FA and Tap-2FA using the framework of Bonneau et al. [4]. ‘∗’ represents that the scheme
“offers” the benefit, ‘+’ represents that the scheme “somewhat offer” the benefit, and ‘−’ indicates that the scheme “does not offer” the
benefit.

Usability Deployability Security

Scheme M
em

or
yw

is
e-

E
f fo

rt
le

ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

P
hy

si
ca

lly
E

ffo
rt

le
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
y-

fr
om

-L
os

s

A
cc

es
si

bl
e

N
e g

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n

R
es

ili
en

t-
to

-L
ea

ks
-f

ro
m

-O
th

er
-V

er
ifi

er
s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

Tr
us

te
d-

Th
ir

d-
Pa

rt
y

R
eq

ui
ri

ng
-E

xp
lic

it-
C

on
se

nt

U
nl

in
ka

bl
e

PIN-2FA − − + − ∗ + + + + ∗ − ∗ ∗ ∗ + + ∗ ∗ − ∗ + ∗ ∗ ∗ −
Tap-2FA − − + − ∗ + + + + ∗ − ∗ ∗ ∗ + + ∗ ∗ − ∗ + ∗ ∗ ∗ −
SG-2FA − − + − ∗ ∗ + + ∗ + − ∗ − ∗ + + ∗ ∗ − ∗ ∗ ∗ ∗ ∗ −

87

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2023 at 20:57:09 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T21:31:38-0400
	Preflight Ticket Signature

