
Privacy Leakage via Unrestricted Motion-Position
Sensors in the Age of Virtual Reality: A Study of

Snooping Typed Input on Virtual Keyboards
Yi Wu∗, Cong Shi†, Tianfang Zhang‡, Payton Walker§, Jian Liu∗, Nitesh Saxena§, Yingying Chen‡

∗University of Tennessee, Knoxville, TN, USA
†New Jersey Institute of Technology, Newark, NJ, USA

‡Rutgers University, New Brunswick, NJ, USA
§Texas A&M University, College Station, Texas, USA

Email: ywu83@vols.utk.edu, cong.shi@njit.edu, tz203@scarletmail.rutgers.edu, prw0007@tamu.edu,
jliu@utk.edu, nsaxena@tamu.edu, yingche@scarletmail.rutgers.edu

Abstract—Virtual Reality (VR) has gained popularity in nu-
merous fields, including gaming, social interactions, shopping,
and education. In this paper, we conduct a comprehensive study
to assess the trustworthiness of the embedded sensors on VR,
which embed various forms of sensitive data that may put users’
privacy at risk. We find that accessing most on-board sensors
(e.g., motion, position, and button sensors) on VR SDKs/APIs,
such as OpenVR, Oculus Platform, and WebXR, requires no
security permission, exposing a huge attack surface for an ad-
versary to steal the user’s privacy. We validate this vulnerability
through developing malware programs and malicious websites
and specifically explore to what extent it exposes the user’s
information in the context of keystroke snooping. To examine
its actual threat in practice, the adversary in the considered
attack model doesn’t possess any labeled data from the user nor
knowledge about the user’s VR settings. Extensive experiments,
involving two mainstream VR systems and four keyboards with
different typing mechanisms, demonstrate that our proof-of-
concept attack can recognize the user’s virtual typing with over
89.7% accuracy. The attack can recover the user’s passwords with
up to 84.9% recognition accuracy if three attempts are allowed
and achieve an average of 87.1% word recognition rate for
paragraph inference. We hope this study will help the community
gain awareness of the vulnerability in the sensor management
of current VR systems and provide insights to facilitate the
future design of more comprehensive and restricted sensor access
control mechanisms.

I. INTRODUCTION

Virtual Reality (VR) technologies have been rapidly gaining
popularity throughout the last decade, owing to their capability
of creating an immersive environment for all users, regardless
of physical constraints. A recent report reveals that the global
market size of VR has grown to $21.83 billion in 2021 and
will be increasing to $69.60 billion by 2028 [41]. In addition
to gaming, which has been currently considered the primary
usage for VR, it also brings upon innovations in a broad range
of areas such as military & medical training [24], financial
services [6], tourism [49], and online collaboration [37].
However, despite the great convenience VR has brought to us,
its security and privacy issues have not received due attention.

Typically, a VR system consists of two types of devices:
a headset that depicts the virtual world and a pair of con-

trollers that facilitate the interaction between the user and
the virtual world. Various sensors, which enable immersive
human-computer interactions, are embedded in the headset
& controllers to track the user’s position, body movements,
surroundings, and inputs. Additionally, the data recorded by
these sensors unavoidably encode various types of user’s
private information, which introduces a severe privacy breach
if they are abused by an adversary. For instance, the adversary
may reconstruct the user’s upper body movements; the user’s
gesture-based inputs to the virtual world could be potentially
snooped on; and even the user’s surroundings could be exposed
to the adversary. While privacy leakage of different types is
possible, in this work, we specifically center our focus on
the following research question: Is it possible to stealthily
eavesdrop on VR sensor data, and to what extent will this
information leakage expose the user’s privacy?

In this paper, we explore this question by investigating
the sensor management policies in VR and provide proof-
of-concept validations to demonstrate that an adversary is
capable of stealthily collecting these sensor data. To further
validate the severity of this privacy breach, we choose to
explore this leakage risk in the context of keystroke snooping
in VR, which is an important way of entering sensitive
information into the virtual world and has been used in various
VR domains, such as text chat, authentication password, and
private healthcare/bank transaction information, etc.

Prior Research in VR Security. Existing research on VR
security & privacy mainly focuses on user authentication [20],
[12], [30], [33], yet the security of sensor data and the potential
consequences caused by this information leakage have barely
been explored. Casey et al. [10] proposed a set of immersive
VR attacks, but their main focus is to compromise the users’
safety (e.g., disorient users and modify VR environmental
factors that force them into hitting physical objects) instead of
compromising the users’ privacy. Ling et al. [26] proposed the
keystroke inference attack on a smartphone-based VR system,
Samsung Gear VR, which was built on top of the Android
operating system and discontinued in 2019 [19]. However, this

1

study only focused on a single typing mechanism for password
inference and made a strong assumption that the rotation angle
of the VR controller from one key to another is fixed, which
would significantly reduce its attack feasibility in practice. We
discuss its practicality in detail in Section IV-B. To the best
of our knowledge, there has yet to be research focused on
examining the security level of sensor data of more popular
PC VR systems (e.g., HTC Vive Pro and Oculus).

Unrestricted Sensors in VR. We thoroughly explore the
security level of various on-board sensors in the three main-
stream VR Software Development Kits (SDKs) and Ap-
plication Programming Interface (API), including OpenVR
SDK [15], Oculus Platform SDK [45], and WebXR Device
API [51]. Particularly, OpenVR and Oculus Platform SDKs
have been widely employed to develop numerous VR appli-
cations, while WebXR Device API is a JavaScript application
programming interface to enable applications to interact with
VR devices in a web browser. For all of them, we find access to
most of the sensor data does not require any user permission,
creating a broad opportunity for the adversary to steal the
users’ private information. Leveraging the built-in functions in
these SDKs/APIs, we validate that the adversary can simply
deploy malware programs or fool the user into visiting ma-
licious webpages to surreptitiously and continuously log VR
sensor data in the background. These unrestricted sensor data,
including the motion, position, and orientation of the headset
& controller, and the button states of the controller, could
expose users to serious privacy threats while using immersive
VR systems.

Snooping Typed Keys on Virtual Keyboards. As an
important text entry interface to enter sensitive information
in VR, typing on virtual keyboards is mainly determined by
the physical dynamics (i.e., position and orientation) of the
controller and its button states. To show the possibility of using
these unrestricted on-board sensors to snoop on keystrokes in
practical attack scenarios, the adversary in our attack model
is not assumed to possess any knowledge about the victim’s
VR setting (e.g., the placement of the stationary base stations),
which determines the sensor’s coordinate systems, or be able
to collect any a-priori labeled training data from the victim.
Specifically, our approach detects and extracts each keystroke
through the unrestricted sensor data and estimates their coordi-
nates in the 3D VR space. According to the type of the victim’s
inputs, we develop two sets of methods to recover passwords
(random characters) and paragraphs (natural language text),
respectively. Prior to the attack, the adversary reconstructs the
virtual keyboard built on each key’s 2D coordinate through
typing with their own VR systems. Regarding the password
inputs, as the victim always needs to input the Enter key at
the end, we propose a backward inference algorithm to find
potential password candidates on the reconstructed keyboard,
which have the most similar trajectories compared with the
user’s input. As for the paragraph inputs, the adversary will
first align the victim’s keystrokes with the reconstructed key-
board and then employ unsupervised learning and labeling
algorithms to recognize each keystroke. Although we for the

first time demonstrate that the typed input in VR can be
snooped via unrestricted sensors, similar keystroke inference
attacks targeting mobile devices leveraging zero-permission
sensors (e.g., accelerometers) have been known for years with
unchanged concepts [38], [35], [9], yet the vulnerability still
exists. Our main contributions are summarized as follows:
• We develop malware programs and malicious webpages to

access unrestricted sensor data on the two most popular VR
systems1, and validate the severity of this privacy leakage
in the context of keystroke snooping, for two interactive
methods of typing (i.e., drum-based and laser-based typing),
and show its possibility to recognize the user’s typing with
an accuracy sufficient to snoop on both passwords and
natural language text.

• We develop a series of algorithms to estimate the position
of the keystrokes input by the victim in a 3D space from the
collected motion-position sensor data and further reveal the
geometric relationship between keys to infer the victim’s
keystrokes. We launch the attack under a realistic but
challenging scenario in which the adversary neither possess
any prior knowledge about the victim’s VR settings nor a-
priori labeled data.

• Extensive experiments involving 14 participants and the
two most popular VR systems, show that an adversary can
recover the victim’s password inputs with an average 84.9%
recognition accuracy within three attempts, and can achieve
89.7% keystroke recognition accuracy with 87.1% WRR for
natural language text.

• We discuss and analyze several potential countermeasures
against this privacy breach. We hope our findings bring
upon insights to the design of sensor management policies
in VR and could help formulate more trustworthy immersive
virtual experiences in the future.

II. PRIVACY LEAKAGE THROUGH SENSORY DATA IN VR
A. Sensors in VR

Various sensors are embedded in the headset & controllers
of a VR system to enable immersive human-computer in-
teraction in virtual environments. For instance, the headset
of HTC Vive Pro, as illustrated in Figure 1 (a), contains
photodetectors (i.e., position sensors) for position tracking
(detailed in Section III-B), front-facing cameras that are used
to capture user surroundings, a microphone that picks up
user’s voice input, and motion sensors (i.e., accelerometer
and gyroscope) which are utilized to estimate the headset’s
orientation. The controller, as shown in Figure 1 (b), has
multiple buttons with different functions (i.e., menu, trackpad,
grip, system, and trigger), with embedded photodetectors for
position tracking and built-in accelerometer and gyroscope
sensors for posture estimation. Note that other VR systems,
such as Oculus Quest, are equipped with a similar set of
sensors to assist the user to interact with these devices in VR
environments. Inevitably, the data from these sensors carry a
vast amount of sensitive information that could potentially put
the user’s privacy at risk.

1Demo videos can be found at the anonymous website [2].

2

TABLE I
SUMMARY OF PERMISSION REQUIRED FROM USERS TO ACCESS VARIOUS SENSORS ON THE MAINSTREAM VR SDKS/API.

Motion Sensor
(Headset & Controller)

Position Sensor
(Headset & Controller)

Button
(Controller)

Front Camera
(Headset)

Microphone
(Headset)

OpenVR SDK [15] ✗ ✗ ✗ ✓∗ ✓
Oculus Platform SDK [45] ✗ ✗ ✗ N/A ✓
WebXR Device API [51] ✗ ✗ ✗ N/A ✓

✓: requires permission; ✗: no permission required; and ✓*: requires global permission (no control over which app can use it)

Position Sensors

Microphone

Front-facing Camera

Motion Sensors
Trigger

Position Sensors

Motion SensorsMenu

Trackpad

GripSystem

(a) Sensors on the headset

Position Sensors

Microphone

Front-facing Camera

Motion Sensors
Trigger

Position Sensors

Motion SensorsMenu

Trackpad

GripSystem

(b) Sensors on the controller

Fig. 1. Sensors in a VR system (i.e., HTC Vive Pro).

B. Sensor Management in VR
To understand the security level of these privacy-sensitive

sensors, we thoroughly examine their access control man-
agement on the two mainstream VR SDKs, i.e., OpenVR
SDK [15] and Oculus Platform SDK [45], and a general
API for developing and hosting VR/AR on the web, i.e.,
WebXR Device API [51]. Unlike existing permission-based
access control that helps decide if an app can access par-
ticular sensors, we find that most sensor data in VR can
be easily exported without requiring explicit user permission,
as illustrated in Table I. Specifically, the low-grade motion
sensor data, position sensor data, and button state data can be
easily accessed without requiring any permission for all the
SDKs/API. Additionally, the video recorded by front-facing
cameras can be accessed on OpenVR as long as the user grants
global permission to its usage [10]. We find that accessing
microphone data always requires user permission. However,
in most cases, it remains unclear to the users whether their
voice data is legally collected and used, even the user grants
permission to a specific app.

C. Proof-of-Concept Validation of Stealthy Sensor Collection
from Controllers

We further validate the viability of stealthily collecting
sensor data (i.e., position, orientation, and button states) of
VR controllers through implementing malware, which could
be either running in the background of the VR environment or
embedded in a VR webpage, on the two mainstream VR SDKs
and the WebXR Device API. Demo videos of this validation
can be found at [2]. Such a proof-of-concept validation also
serves as the foundation of the attack model (Section IV-A)
in snooping typing on virtual keyboards.

OpenVR SDK. We write a malware script via OpenVR [15]
that continuously logs the victim’s controller sensor
data in the background and sends them to a remote
adversarial server. As illustrated in Figure 2 (a), we use
the built-in getDeviceToAbsoluteTrackingPose
function to get the position & orientation of the

controller, while the button states can be obtained via
the getControllerState function. Both functions
do not require user permission and could run stealthily
in the background without being noticed by the
victim. The getDeviceToAbsoluteTrackingPose
function will return a pose object with the
mDeviceAbsoluteTracking attribute, which
contains the raw position data of the controller
and the quaternion representation of its orientation.
The getControllerState function will return a
VRControllerState_t object with three critical
attributes: rAxis0, rAxis1, and ulButtonPressed,
which reflect the interaction point of the victim to the
touchpad, the dynamics of the user pressing the trigger
button, and whether other buttons (e.g., menu and grip) are
pressed, respectively.

Oculus Platform SDK. We also build a VR program
on the Oculus Platform SDK [45] (v32) based on C++
and successfully extract the aforementioned sensor data
without any permission in the background. According to
the Oculus Data Policy [46], we find that it’s legitimate
for a developer to collect the user’s movement data
(e.g., hand movement data) and the input button states.
As illustrated in Figure 2 (b), we obtain the sensor
data through the ovr_GetTrackingState function,
which returns an object (ovrTrackingState) with the
HandPoses data member containing the sensor data of
the controller. Specifically, HandPoses includes five data
attributes including ThePose, AngularAcceleration,
AngularVelocity, LinearAcceleration, and
LinearVelocity. ThePose records the 3D positions
of the controller, and the position data is stored in a vector
with three elements (i.e., positions on the x-, y-, and z-
axes). AngularAcceleration and AngularVelocity
contain the controller’s angular acceleration and velocity,
while LinearAcceleration and LinearVelocity
include the controller’s moving acceleration and velocity on
the x-, y-, and z-axes. Moreover, the app can collect the input
button states (e.g., trigger, grip, and touchpad) by calling the
API function ovr_GetInputState, which returns states
for all the controller buttons. Additionally, we also explore
the potential of side-loading an Android app on Oculus to
extract the sensor data, which is detailed in Appendix A.

WebXR Device API. Instead of running a script/app on
the victim’s desktop, we also validate that the sensor data
can be eavesdropped via a malicious VR webpage leveraging
the WebXR Device API [51]. WebXR enables virtual world
rendering purely on a webpage and is compatible with most

3

No Permission Required

No Permission Required

(a) Obtain sensor data from OpenVR SDK

No Permission Required

(b) Obtain sensor data from Oculus SDK

Permission Required to Enter Virtual World

No Permission Required

(c) Obtain sensor data from WebXR Device API

Fig. 2. Code snippets of obtaining sensor data in VR on the three mainstream VR SDKs/API.

Cursor

Laser Drumstick

(a) Drum-based typing

Cursor

Laser Drumstick

(b) Laser-based typing

Fig. 3. Illustration of typing in VR.

𝑮𝒚

𝑮𝒙

Stationary Base Station

Position
Sensors

𝑮𝒛 𝑪𝒙

𝑪𝒚

𝑪𝒛
Roll

Pitch

Yaw

Position
Sensors

Camera

𝑮𝒚

𝑮𝒛

𝑮𝒙

Roll
𝑪𝒚 Yaw

𝑪𝒛

Pitch
𝑪𝒙

(a) Outside-in tracking (HTC Vive
Pro)

(b) Inside-out tracking (Oculus
Quest)

Fig. 4. Position tracking & coordinate systems in VR.

browsers & VR systems. To enter the virtual world through the
webpage, WebXR requires the victim’s permission to create
a session and further render the virtual world. However,
after the victim enters the virtual world, there’s no permission
required to get the sensor data, as illustrated in Figure 2 (c).
Specifically, we use the getPose.transform function to
return a gripPose object of the controller. The 3D position
can be obtained via the position attribute, and the orien-
tation can be obtained via the orientation attribute. Ad-
ditionally, the inputSources.gamepad.buttons object
will reflect the controller’s state, with the pressed attribute
indicating which button is pressed by the victim.

III. PRELIMINARIES OF TYPING IN VR

A. Text Entry Interfaces in VR
As shown in Figure 3, users can interact with virtual key-

boards via two typing mechanisms, i.e., drum-based typing and
laser-based typing. Drum-based typing has been implemented
for various types of applications including shopping (e.g., Vive
Port [13]), designing tools (e.g., Tvori [47], Google Daydream
Labs [22]), and text editors in VR (e.g., Notepad++). As
illustrated in Figure 3 (a), generally the controller will be

represented as a drumstick, and the user must swing the
controller to hit the keys on a virtual keyboard - just like hitting
drums. Differently, in laser-based typing, the controller acts
like a laser pointer which allows the user to point to the key
they want to enter, as shown in Figure 3 (b). A cursor reflects
the intersection between the laser and the keyboard determines
the key to be entered. The user then needs to press a button
on the controller (usually the trigger button) to input a specific
key. This way of typing has been widely deployed in various
VR browsers (e.g., Firefox Reality [36]) and online meeting
apps (e.g., Vive Sync [14], VRChat [23]). We further examine
the typing mechanisms and keyboard layouts of 13 apps
selected from top sellers in Vive Port [4], Oculus Store [3],
and top VR apps in 2022 [1]. As listed in Table II, we find that
all of these apps either apply drum-based typing or laser-based
typing. Given the popularity of these two typing mechanisms,
we target both of them in our attack scenarios. In addition, we
also examine their virtual keyboard layouts and find that they
all use the standard QWERTY keyboard for alphabets, and
most keyboards have numeric keys appearing on the top with
Enter on the right. As these keyboards share a similar layout,
the keystroke inference attacks relying on the relative positions
among keys are transferable across different virtual keyboards
in VR. This also validates the generality and severity of the
proposed privacy leakage attack.

B. Position Tracking & Coordinate Systems

To show our attack’s generality, we consider the following
two major types of visual position tracking systems:

Outside-in Tracking. Outside-in tracking uses visual sen-
sors (e.g., cameras or laser-sensors) placed in a stationary
location and oriented towards the VR headset and controllers
to track their positions. Various VR systems, such as HTC Vive
Pro, Oculus Rift, and PlayStation VR, use this type of tracking.
Figure 4 (a) illustrates the setting of the outside-in tracking
used by HTC Vive Pro. Specifically, two base stations, which
are fixed within the environment, continuously emit infrared
(IR) laser beams across the space, while the position sensors
embedded in the headset & controllers measure the timing of
laser sweeps and further estimate the relative position. The
estimated positions of the headset and controllers are in the
same global VR coordinate system G, which is determined by
the placement of the two base stations. In addition, the headset
& controllers also have their local coordinate systems used for

4

20 10 0 10 20 30 40
Pitch (Degree)

5

10

15

20

25

30

R
ol

l (
D

eg
re

e)
T
Y
U
G
H
J

Fig. 5. Orientation of the Controller while Typing.

deriving rotation angles. For instance, the embedded motion
sensors can return the orientation (i.e., pitch, roll, and yaw) of
the controller with respect to its local coordinate C, as shown
in Figure 4 (a).

Inside-out Tracking. Unlike outside-in tracking, inside-out
tracking uses multiple cameras on the headset to observe visual
features (e.g., visual patterns of furniture and devices) in the
environment and triangulate the headset’s and the controllers’
3D positions. In addition, inside-out tracking determines the
relative position of the controllers to the headset with infrared
(IR) LEDs on the controllers (e.g., IR rings on the 2nd
generation of Oculus Touch). Real-time motion sensor data
from the headset and the controllers (e.g., accelerometer and
gyroscope readings) are leveraged to continuously refine the
estimated 3D positions. As such a tracking scheme does not
require to install base stations in the environment, it has been
widely used in many latest headsets, including Oculus Quest
1&2, Vive Cosmos, and Samsung HMD Odyssey. Similar to
the outside-in systems, the headset and the controllers are in
the same global VR coordinate system G for the position
tracking, which is initialized when the VR devices are turned
on, as illustrated in Figure 4 (b). The rotational motion vectors
of the headset & controllers are with respect to their local
coordinate systems.

IV. THREAT MODEL & ATTACK OVERVIEW

A. Threat Model

We consider an attack scenario in which an adversary seeks
to infer a victim’s keystrokes on the virtual keyboard through
the VR controllers. We assume the adversary can fool the
victim into either installing a malware program developed
on the mainstream VR SDKs (e.g., OpenVR SDK or Oculus
SDK), or visiting a malicious VR webpage created by WebXR
Device API. In either case, the adversary can obtain the sensor
data of the victim’s controller remotely by leveraging the built-
in functions described in Section II, including the controller’s
position, orientation (i.e., pitch, yaw, and roll), and the button
states (i.e., which button is pressed). The malware program
can be either disguised as a legitimate VR app/plugin, or
embedded into a third-party VR development library, which
might be used by many developers to build their VR apps. For
instance, the adversary can embed the malicious code snippet
in a seemingly benign software, such as a PC cleaning software
or a system monitoring tool. The adversary can also post the
malware online and lure the victims to install it by themselves.
As these types of software tend to work in the background

and can run along with other processes, it can stealthy log the
sensor data while the victim is typing in VR, which is hard
to be noticed. Compared to the malware program, attacks by
hosting a malicious VR webpage would be more accessible
to the adversary and more devastating as it does not require
installing a third-party app on the victim’s device.

Note that, in this paper, we do not consider the scenario
in which the keystrokes can be directly accessed by the
malware. We thoroughly examined the functions in the four
SDKs; however, there are no functions that can directly access
the victim’s keystroke inputs from the VR app. Since the
keystrokes are stored in the app’s local variables, directly
accessing them is impossible without modifying the app.
Adding malicious functions to the SDKs or directly modifying
the app would make the assumption too strong. Instead, the
adversary chose to leverage the zero-permission sensor data
as the side-channel to launch the attack.

In our considered attack model, the adversary doesn’t pos-
sess any knowledge about the victim’s VR system setting,
such as the placement of the stationary base stations, which
determines the devices’ position tracking coordinates. The
adversary doesn’t need to collect any a-priori labeled training
data from the victim either. We only assume the adversary has
prior knowledge about the virtual keyboard that the victim
uses, including the information about the virtual keyboard
layout and typing mechanism (i.e., drum-based or laser-based
typing). The adversary can then leverage his/her own VR
device in any settings to build a reference pattern for the attack.
We further discuss the scenario in which the adversary does
not possess this knowledge and uses a completely different
keyboard to launch the attack in Appendix G. Although this
knowledge is not directly known to the adversary in practice,
the adversary can attempt to use various typing interfaces
based on their popularity and estimate this knowledge by
checking the intelligibility of the identified text inputs. As
concluded in Table II, all keyboards in these mainstream
applications employ the same QWERTY layout for alphabets,
with most of them having 10 numeric keys on the top of the
keyboard and Enter on the right side, making this knowledge
can be easily estimated by the adversary even if the layout of
the keyboard is unknown. Additionally, only laser-based typing
needs to press the button on the controller for each keystroke,
thus the adversary can use the button status to identify whether
it is drum-based typing or laser-based typing. We believe that
the proposed attack is under a very practical threat model and
can be surreptitiously and easily launched in practice.

B. Challenges & Assumption Validation

Challenges. Unlike physical keyboards, virtual keyboards
usually have unfixed positions, postures, and scale sizes in
the virtual environment, which are dominated by the virtual
scenes in which the user is located and the user’s orientation
when typing function is called. In addition, the position sensor
readings from the VR devices are all with respect to their
global VR coordinate system (G in Figure 4), which is depen-
dent on the device settings, such as the placement positions

5

of the two stationary base stations and the position where
the devices are initialized/turned-on. With different virtual
keyboard positions & orientations and coordinate systems, the
motion-position data of the adversary and victim will exhibit
completely different patterns, making the adversary unable to
directly predict the victim’s keystrokes from the sensor data.
The adversary needs to accurately estimate the position of
the keystrokes typed by the victim and further align the vic-
tim’s coordinate system with his/hers to reveal the geometric
relationship between keys, which poses a great challenge if
the adversary neither possesses any prior knowledge about the
victim’s VR settings nor a-priori labeled training data.
Assumption Validation. A recent study [26] has shown the
possibility of using motion sensors to snoop on keystrokes
on a smartphone-based VR system, Samsung Gear VR. How-
ever, it only targets laser-based typing and assumes that the
controller’s rotation angles while typing the same key are
highly consistent and the angles remain distinguishable while
typing different keys. However, in practical typing scenarios,
users tend to move around the controller frequently, which
makes it hard for the user to remain the controller at the
same position while typing on virtual keyboards, even on the
same key. As the controller’s orientation to a specific key is
highly dependent on the controller’s position, it is impractical
to assume each key has distinguishable rotation angles of the
controller. To validate this, we ask one participant to repeatedly
type six adjacent keys (i.e., T, Y, U, G, H, J) and the “Enter”
key on a laser-based keyboard using HTC Vive Pro. Figure 5
illustrates the rotation angles of each keystroke relative to the
“Enter” key along the x-axis and y-axis in Figure 4 (i.e., roll
and pitch). It is clear to observe that the rotation angles for
each key are highly inconsistent, which demonstrates that the
assumption made in the prior work cannot be generalized in
practical typing scenarios.

C. Attack Overview

The goal of our attack is to snoop on keystrokes on virtual
keyboards leveraging the unrestricted sensors of current VR
systems. We consider an attack scenario, where the victim
uses either drum-based typing or laser-based typing to enter
inputs, which could be natural language or passwords com-
posed of random characters. As illustrated in Figure 6, to
launch attacks, the adversary can stealthily collect the sensor
data associated with the victim’s typing from the VR device
(i.e., position, orientation, and button states of the VR con-
troller) through the deployed malware programs or malicious
webpages (Section II-C). The adversary then recognizes its
typing mechanisms (i.e., drum-based or laser-based typing)
and detects each keystroke segment. According to the typing
mode, we design two approaches to estimate each typed key’s
3D position in the virtual environment, namely, 3D Keystroke
Position Estimation and 3D Cursor Position Estimation. The
adversary then employs Keyboard Plane Estimation & 2D
Keystroke Position Projection to identify the 2D plane of the
virtual keyboard and project all of the 3D keystrokes to the
plane to get their corresponding 2D coordinates.

As the adversary doesn’t possess any knowledge about
the virtual keyboard used in the victim’s VR environment,
the adversary will need to type each key of the keyboard
using their own VR devices to reconstruct a 2D keyboard.
Although the reconstructed virtual keyboard might be different
from the one victim uses in terms of their positions and
postures within their own coordinate systems, their key-to-key
geometric relationship should be highly consistent. Thus, the
2D keyboard reconstructed by the adversary’s typed data will
serve as a reference to help recognize the victim’s typing.

According to input length and the last entered key (the last
key entered in the password input should be the “Enter” key),
the adversary can determine whether the victim has entered a
password or natural language text. If the victim has entered
a password, the adversary will perform Password Inference
via Tree-based Backward Typing Trajectory to inversely infer
the password sequence from the “Enter” key and generate
a set of password candidates. The adversary can then rank
these candidates through analyzing the angles and distances of
typing trajectory in Ranking Password Candidates via Typing
Path Analysis. As for the natural language input, the adversary
will first cluster all the detected keystrokes in an unsupervised
manner via Keystroke Clustering via DBSCAN [16]. The cen-
troids of the key clusters formulate the keyboard used by the
victim. The adversary then performs Keyboard Alignment via
LSE [25] to align the victim’s keyboard with the 2D keyboard
reconstructed by the adversary and further recognizes each
keystroke leveraging Keystroke Labelling via KNN. To further
improve the typing reconstruction, the adversary will adopt
language models to fix the grammatical & spelling errors in
the reconstructed sentences.

V. ATTACK DESIGN

A. Typing Mechanism Recognition & Keystroke Detection

In our attack, we consider an input session in which the
victim continuously types on the virtual keyboard in VR.
Drum-based typing requires the user to swing the controller
to hit keys, while laser-based keystroke is triggered by the
controller’s button. Thus, the adversary can use the button state
and its pressing frequency to detect laser-based input sessions.
Specifically, the adversary can detect the input session through
solving the following equation:

argmax
ts,te

te − ts,

s.t., fmin < freq(ts, te) < fmax , tmin < te − ts,
(1)

where ts, te are the timestamps when the victim starts/ends
the input session, tmin is the minimal duration of typing,
freq(ts, te) is the frequency of the trigger button being
pressed within [ts, te], fmin and fmax are the lower/upper
bounds of freq(ts, te). According to the Word Per Minute
(WPM) for laser-based typing [8], fmin and fmax are set to
1 Hz and 2 Hz, respectively. tmin is set to 5 seconds to make
the input session remain a reasonably long time period. If
Equation 1 can be solved, all keystrokes can be easily detected
within the input session, while other button activities outside

6

Keyboard Plane
Estimation &
2D Keystroke

Position
Projection

2D Keyboard Reconstructed
by the Adversary’s Typed Data

Ranking Password
Candidates via Typing

Path Analysis

Keyboard
Alignment

via LSE

Keystroke
Labeling
via KNN

Password Inference via
Tree-based Backward

Typing Trajectory

Keystroke
Clustering via

DBSCAN

Password Recovery

Paragraph Inference

Error Correction
via Language

Models

Typing in VR

Adversary

Position,
Orientation,
and Button

States of the
VR Controller

Typing
Mechanism

Recognition &
Keystroke
Detection

Drum-based Typing

3D Keystroke
Position Estimation

3D Cursor Position
Estimation

Laser-based Typing

Reconstructed
Sentences

Top-k
Passwords

Fig. 6. Attack Overview.

Detected Keystrokes
Removed Outliers

Keystroke Sequence

Keystroke
Sequence

Detected
Keystrokes

Removed
Outliers

𝒕𝒔 𝒕𝒆
𝒕𝒔 𝒕𝒆

(a) Laser-based typing

Detected Keystrokes
Removed Outliers

Keystroke Sequence

Keystroke
Sequence

Detected
Keystrokes

Removed
Outliers

𝒕𝒔 𝒕𝒆
𝒕𝒔 𝒕𝒆

(b) Drum-based typing

Fig. 7. Illustration of Keystroke Detection.

the session would be considered as outliers (non-typing-related
button activities), as illustrated in Figure 7 (a).

As for drum-based typing, swinging the controller (like
hitting drums) will cause significant displacement vertically,
which will reflect on the Gy-axis of the position data. Thus, a
valley detection algorithm provided by the Scipy toolkit [48]
can be used to detect valleys along the Gy-axis. As the WPM
for drum-based typing ranges from 13.43 to 29.81 [8], the
adversary regulates the distance between two adjacent valleys
to at least 0.4 seconds. The prominence of the valley, which
is the vertical distance between the valley and its highest
contour line, is empirically set to 3 cm. The adversary then
uses Equation 1 to detect the input session ts and te, but fmax

is set to 2.5 Hz according to the WPM of drum-based typing,
and freq(ts, te) is the frequency of the valleys that appear in
the input session. An example of the detected keystrokes and
input session for drum-based typing is illustrated in Figure 7
(b).

Effectiveness Validation. To validate the effectiveness of
the detection algorithm, we collect 3-hour data from three
participants using HTC Vive Pro, with each participant in-
cluding 30-minutes data for both laser-based typing and drum-
based typing. For each typing mechanism, each participant
is asked to type 10 sentences in Table III with a total
number of 455 characters, then conduct three different types
of activities in the remaining minutes: playing a VR game
(i.e., Beat Saber), browsing immersive websites, or watching
an immersive video. We use True Positive Rate (TPR) and
False Positive Rate (FPR) as evaluation metrics. Specifically,
TPR is the ratio of correctly detected keystrokes among all
keystrokes, and FPR is the ratio of falsely detected keystrokes
among all outliers (e.g., button activities & valleys caused
by non-typing-related activities). For drum-based typing, we

reach 97.9% TPR and 5.7% FPR, while the TPR and FPR are
99.4% and 5.3% for laser-based typing, respectively. These
promising results demonstrate that we can successfully distin-
guish typing activities from other irrelevant button activities
& body movements.
B. Keystroke Position Estimation

Based on the typing mechanism, the adversary can estimate
each keystroke’s position using the following methods:
3D Keystroke Position Estimation. In drum-based typing, the
positions of each entered key can be directly obtained from
the controller’s positions. Particularly, the adversary uses a
window of 0.5 seconds centered at the detected valley along
the Gy-axis to calculate the position mean along each axis in
the frame G. Each keystroke can be then represented as a 3D
vector containing its position in the 3D VR space.
3D Cursor Position Estimation. In laser-based typing, the
key entered by the laser pointer is dependent on both the
position and orientation of the VR controller. As the laser is
in the direction of the Cz-axis of the controller, its direction is
determined by the pitch (α) and roll (β) of the controller and
is irrelevant to the yaw angle (Figure 4). The rotation matrix
R of the laser, with respect to its initialized stage where pitch
& roll are all zero, can thus be derived as:

R =

 cos (α) 0 sin(α)

0 1 0

− sin(α) 0 cos (α)


1 0 0

0 cos(β) − sin(β)

0 sin(β) cos(β)

 . (2)

To derive the position of the cursor after rotation, the adversary
needs to know its position at the initialized stage (i.e., pitch
and roll equal to zero). Although the adversary doesn’t possess
any information about the global coordinate system G of the
victim, we observe that the controller’s pointing direction (i.e.,
Cz-axis) is always initially aligned in the negative direction of
the Gz-axis. Given the position of the controller as [x, y, z]T ,
the position of the cursor Pc on the virtual keyboard can
thus be estimated as Pc = R · [x, y, z − l]T , where l is the
distance between the keyboard and the controller along the z-
axis, which is relatively consistent and can be easily estimated
by the adversary with his/her own typed data.

C. Keyboard Plane Estimation & 2D Keystroke Position Pro-
jection

As all keys are located on the same plane (i.e., the plane of
the virtual keyboard), the adversary’s next step is to identify
this 2D plane and project all the keystrokes to it to get their 2D

7

Estimated 2D Plane
Keystroke Samples

(a) Keyboard plane estimation

Estimated 2D Plane

Keystroke Samples
𝑶 (𝟎, 𝟎, 𝒄)

𝑨𝒙

𝒑𝒍𝒂𝒏𝒆:𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝒛

Keystroke Sample

𝒌𝒊 = (𝒙𝒊, 𝒚𝒊, 𝒛𝒊)

Projected 2D Keystroke
෡𝒌𝒊 = (ෝ𝒙𝒊, ෝ𝒚𝒊)

(b) 2D keystroke position projection

Fig. 8. Illustration of Keyboard Plane Estimation & 3D-to-2D Projection.

coordinates. Specifically, we consider the virtual keyboard’s
plane as ax+by+c = z, and the ith keystroke’s 3D coordinate
is represented as (xi, yi, zi). Since all keystrokes are on the
same plane, we can get the following equation:

x0 y0 1
x1 y1 1

. . .
xn yn 1


ab
c

 =


z0
z1
. . .
zn

 , (3)

where n is the number of detected keystrokes. Equation 3
can be represented as AX = B for simplicity. The unknown
vector X can be derived using Least Square Estimation
(LSE) [25]:

X =
[
a b c

]T
= (ATA)−1ATB. (4)

Figure 8 (a) depicts 100 keystrokes in the 3D VR space with
the identified 2D plane of the virtual keyboard.

To obtain the 2D coordinates of the keystrokes projected
onto the plane, we define O = (0, 0, c) as the origin of the 2D
plane, as shown in Figure 8 (b). Ax = (1, 0, a + c) is in the
plane’s positive x-axis direction. To determine the direction of
the y-axis, we define a point Ay = (xy, 1, zy) on the y-axis
and solve the following equations:{

axy + b+ c = zy

Ax ·Ay = 0
(5)

where Ax and Ay are the vectors from O to Ax and Ay ,
respectively. After we obtain Ay , which is (− ab

a2+1 , 1,
b

a2+1 +
c), the 2D coordinate (x̂i, ŷi) of the keystroke i in the plane
can be obtained using the following equation:

x̂i =
ki ·Ax

||Ax||
, ŷi =

ki ·Ay

||Ay||
, (6)

where ki is the vector from the origin O to the ith keystroke’s
3D coordinate (xi, yi, zi).

D. 2D Keyboard Reconstructed by the Adversary’s Typed Data

Prior to inferring the victim’s keystrokes, the adversary will
first generate a reconstructed keyboard through typing with
his or her own VR system. Specifically, the adversary will
repeatedly type each key multiple times and then process the
sensor data via the aforementioned detection, position estima-
tion, and projection mechanisms without too much effort. To
further reduce the required effort, it is possible to use fewer
keys to reconstruct the keyboard through mapping them to the

Enter

…. ….1 U H B EnterQ Z….

Password Sequence: F-B-Enter

…. 𝑫𝟏 ∶ 𝟎. 𝟏𝟕𝟕 (Enter-to-B)

I MTG KO J CF

0.174 00.1540.1460.327 0.337 0.292
𝑲𝟏 𝑲𝟐 𝑲𝟑

𝑫𝟐 ∶ 𝟎. 𝟎𝟓𝟓 (B-to-F)

𝑲𝟏𝟏 𝑲𝟏𝟐 𝑲𝟏𝟑 𝑲𝟐𝟏 𝑲𝟐𝟐 𝑲𝟐𝟑 𝑲𝟑𝟏 𝑲𝟑𝟐 𝑲𝟑𝟑
0.057 0.056 0.058 0.051 0.054 0.057

OU GU KU TH IH MH FB JB CB 𝟑𝟐 Predications

Fig. 9. Tree-based Backward Typing Trajectory Estimation for Password
Recovery.

False Prediction
Correct Prediction

0.215

0.216

0.136

0.1340.135

0.183 0.179
0.079 0.070

0.266
0.269

0.144

4 (𝒌𝟒)

E (𝒌𝟑) O (𝒌𝟓)

Enter
(𝒌𝟏)F (𝒌𝟐)

N

4 (𝒌𝟒)

E (𝒌𝟑) O (𝒌𝟓)

F (𝒌𝟐)

𝜽𝟑𝟏𝟐𝜽𝟏𝟐𝟑

#𝜽𝟑𝟏𝟐#𝜽𝟏𝟐𝟑

2D Keystrokes of the Victim

Enter
(𝒌𝟏)

(a) Inferred trajectory on the recon-
structed keyboard

False Prediction
Correct Prediction

0.215

0.216

0.136

0.1340.135

0.183 0.179
0.079 0.070

0.266
0.269

0.144

4 (𝒌𝟒)

E (𝒌𝟑) O (𝒌𝟓)

Enter
(𝒌𝟏)F (𝒌𝟐)

N

4 (𝒌𝟒)

E (𝒌𝟑) O (𝒌𝟓)

F (𝒌𝟐)

𝜽𝟑𝟏𝟐𝜽𝟏𝟐𝟑

#𝜽𝟑𝟏𝟐#𝜽𝟏𝟐𝟑

2D Keystrokes of the Victim

Enter
(𝒌𝟏)

(b) Trajectory of the victim’s typing

Fig. 10. Backward Password Inference Leveraging Accumulated Displace-
ment & Orientation.

standard QWERTY layout. The adversary further implements
the K-means clustering algorithm [31] on the projected 2D
keystrokes, where k is set to the number of keys being
typed. The detected centroids will formulate the reconstructed
keyboard, which will be further used as a reference to help
infer the typed inputs of the victim.
E. Password Recovery
Password Inference via Tree-based Backward Typing Tra-
jectory. As the victim will always input the “Enter” key at the
end, the adversary employs a tree-based backward inference
algorithm leveraging on the reconstructed 2D keyboard. An
example of inferring a 2-character password is illustrated in
Figure 9. Specifically, the “Enter” key in the reconstructed
keyboard serves as the root node of the tree, and the adver-
sary calculates its absolute distance to all other keys in the
reconstructed keyboard. The adversary then compares these
distances with the absolute distance D1 between the last
key (i.e., the Enter) and the second-to-last key (i.e., the last
character of the password) of the victim. The adversary finds
the top 3 keys K1,K2,K3, which are closest to D1. The
adversary then increases the depth of the tree and repeats the
same step for K1,K2,K3 and find another set of three closest
keys (e.g., K11,K21) in the next layer of the tree for each of
them. The same step is repeated for the newly added keys until
the depth of the tree increases to the length of the password
n, at which point the adversary can finally obtain 3n possible
password candidates.
Ranking Password Candidates via Typing Path Analysis.
The tree-based inference algorithm only considers the distance
between adjacent keys, which will yield many false predic-
tions. For instance, Figure 10 shows an example of inferring
the “O-4-E-F-Enter” sequence using the reconstructed key-
board. We observe that the L2 distance between “E” and
“F” in the victim’s trajectory is 0.134 in Figure 10 (b).
In the process of backward inferring the next character of

8

“Enter-F”, the adversary may mistakenly predict it as “N”
rather than “E”, because in the reconstructed keyboard the
distance between “N” and “F” (i.e., 0.135) is closer to 0.134
compared with the distance between “E” and “F” (i.e., 0.136).
To quantify the errors between the inferred password path on
the reconstructed keyboard and the victim’s actual typing path,
the designed method takes into account both accumulative
distance and orientation similarity of the typing path to sort all
the password candidates derived from the tree-based backward
password inference. Specifically, for the nth candidate, and
for every possible keystroke pair {ki, kj} (i.e., ith and jth
keystrokes), the adversary calculates the relative difference
of their L2 distances between the reconstructed keyboard
D(ki, kj) and the victim’s trajectory D̂(ki, kj) and further
adds them together to get the accumulated distance Dn:

Dn =

n−1∑
i=1

n∑
j=i+1

|D(ki, kj)− D̂(ki, kj)|
D̂(ki, kj)

. (7)

Additionally, the adversary also calculates the orientation
similarity between a candidate and the trajectory of the victim
leveraging the intersection angles formulated by three different
keystrokes, as illustrated in Figure 10. Given a combination of
three keystrokes {ki, kj , kk}, the intersection angle θijk can
be calculated as:

θijk = arccos(

−−→
kikj ·

−−→
kjkk

|
−−→
kikj ||

−−→
kjkk|

). (8)

Similar to the accumulated L2 distances, the adversary ac-
cumulates the relative difference of these angles between the
reconstructed keyboard and the victim’s trajectory to get the
orientation difference On (Note θijk = θkji):

On =

n∑
i=1

n∑
j=1

n∑
k=i+1

θijk − θ̂ijk

θ̂ijk
(i ̸= j ̸= k). (9)

The relative error for the nth candidate En is thus defined as
Dn+On. The adversary then sorts all the password candidates
based on it in ascending order.
No-Enter Key Scenario. If the “Enter” key is not pressed
at last, given the password length as n, the adversary treats
each possible combination that contains n keys as a password
candidate. The adversary then performs the same typing path
analysis algorithm to analyze the relative error between the
candidate and the keystrokes input by the victim, then sort all
the candidates based on the error in ascending order.

F. Paragraph Inference

Keystroke Clustering via DBSCAN. For natural language
inputs, as the positions of keystrokes for the same key are very
close to each other, the adversary employs DBSCAN [16], a
density-based spatial clustering algorithm, on the projected 2D
keystrokes. The minimum number of instances in each cluster
is set to 2, and the maximum distance between two instances
that can be considered as neighbors in the same cluster is
empirically set to 0.03, which is approximately the average
distance between adjacent keys on the virtual keyboard.

Keyboard Alignment via LSE. Since the victim’s keyboard
and the adversary’s reconstructed keyboard are usually gener-
ated under different coordinate systems, their position, orien-
tation, and scale may differ a lot. Nonetheless, the keyboard
layout should be relatively consistent. Thus, in this step,
the adversary can align the keyboard of the victim to the
adversary’s reconstructed keyboard using LSE. Specifically,
the adversary randomly selects n keys from the reconstructed
keyboard, where n is the number of detected DBSCAN
clusters. Given the coordinates of the ith detected centroids as
[xi, yi] and the ith selected key in the reconstructed keyboard
as [x̂i, ŷi], the following equation can be obtained:

x0 y0 1

x1 y1 1

. . .

xn yn 1


a1b1
c1

 =


x̂0

x̂1

. . .

x̂n

 ,


x0 y0 1

x1 y1 1

. . .

xn yn 1


a2b2
c2

 =


ŷ0

ŷ1

. . .

ŷn

 , (10)

where a1, b1, c1, a2, b2, c2 can be solved using Equation 4. The
ith key on the aligned keyboard [x̂′

i, ŷ
′
i] can thus be calculated

as [a1xi + b1yi + c1, a2xi + b2yi + c2]. To find the most
appropriate alignment, the adversary uses the average distance
between [x̂′

i, ŷ
′
i] and [x̂i, ŷi] as the metric.

Keystroke Labelling via KNN & Error Correction via
Language Models. After aligning the victim’s keyboard to
the adversary’s reconstructed keyboard, the adversary can
simply use the KNN classification algorithm to recognize each
keystroke typed by the victim. The reconstructed keyboard
serves as the training data, and K is set to 1. To further improve
the reconstructed natural language text, the adversary will use
a language tool to fix the grammatical & spelling errors for a
more precise prediction. We choose to use the “spelling and
grammar” function in Google Docs, yet many other online
language tools can be used as well.

VI. ATTACK EVALUATION

A. Experimental Methodology

Devices & Virtual Keyboards. We evaluate the proposed
attack using two mainstream VR systems: HTC Vive Pro and
Oculus Quest, which belong to outside-in and inside-out track-
ing, respectively. HTC Vive Pro is connected to an Alienware
desktop running on Windows 10 with a GeForce GTX 1660Ti
GPU, while Oculus Quest is connected to a Lenovo Legion 5
laptop equipped with a GeForce RTX 2060 GPU running on
Windows 10. The developed malware programs (Section II-C)
have been installed in these computers so that the adversary
could remotely access the unrestricted sensor data. We use
both drum-based and laser-based keyboards. Specifically, for
HTC Vive Pro, we chose the built-in keyboards of Tvori
(drum-based) and Vive Sync (laser-based), while for Oculus
Quest, we use the virtual keyboard of Notepad++ for both
drum-based and laser-based typing styles. By default, the
sensor data is sampled at 250 Hz for HTC Vive Pro and 60
Hz for Oculus Quest.
Typing Data Collection. Our data collection involves 7
participants for each VR system (14 participants in total).
The participants include 11 males and 3 females, aging from

9

1 2 3 4 5 6 7 8 9 0 q w e r t y u i o p a s d f g h j k l z x c v b n m space enter0.0

0.2

0.4

0.6

0.8

1.0

K
ey

st
ro

ke
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Vive-Drum
Vive-Laser
Oculus-Drum
Oculus-Laser

Fig. 11. Performance of Single Keystroke Recognition.

V1 V2 V3 V4 V5 V6
Victim ID

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n/
R

ec
al

l

Precison-Drum
Recall-Drum
Precison-Laser
Recall-Laser

(a) HTC Vive Pro

V7 V8 V9 V10 V11 V12
Victim ID

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n/

R
ec

al
l

Precison-Drum
Recall-Drum
Precison-Laser
Recall-Laser

(b) Oculus Quest
Fig. 12. Performance of Keystroke Recognition for Drum-based & Laser-
based Typing on HTC Vive Pro & Oculus Quest.

22 to 34. The participants are asked to type on the virtual
keyboards in VR for some time to get familiar with VR
typing before the official data collection. For each VR system,
one of the participants pretends to be the adversary and
the remaining six participants are treated as victims. We set
different VR systems’ settings (e.g., positions of the stationary
base stations used for HTC Vive Pro) between the adversary
and victims to create a more realistic attack scenario. For
each virtual keyboard, all participants (both the adversary and
the victims) are asked to type 38 keys (i.e., 26 alphabets,
10 numeric, space, and enter) repeatedly, 20 times each. The
typed data of the adversary will be utilized to generate the
reconstructed keyboard (Section V-D), and the performance
for single keystroke recognition is evaluated in Section VI-B.
We randomly generate three different passwords with lengths
of 4, 6, and 8 for each victim. For each key in a password, we
randomly select one keystroke that stands for the specific key
from the victim’s typed data, with a randomly chosen“Enter”
key at last. These randomly selected keystrokes formulate a
password input, and we formulate 42 different passwords for a
more comprehensive evaluation. We evaluate the performance
of the password recovery attack in Section VI-C. Additionally,
all victims are asked to type 10 randomly selected phoneme
balanced sentences from the Harvard sentences dataset [42]
in Table III. The results of inferring these sentences using the
attacker’s typed data are presented in Section VI-D. We also
conduct the same experiments on an Android app, and the
performance evaluation is detailed in Appendix E. We also
extend the password recovery attack through involving no-
enter key scenario and upper cases & symbols and , which
is detailed in Section VI-E and Appendix F, respectively.
Furthermore, we discuss the worst-case scenario, in which the
adversary and the victim use completely different keyboards,
in Appendix G. During data collection, we let the participants

equip the headset on their own and do not control their
standing position, facing orientation, or typing speed for any
of the experiments. Each participant is asked to conduct
experiments in different sessions, and their WPM varies from
15.2 to 21.7 for drum-based typing, and 11.3 to 17.8 for laser-
based typing. Additionally, we do not collect any labeled data
from the victims prior to the attack. In total, we collect 3,480
keystrokes from the two adversaries and 36,880 keystrokes
from the 12 victims in a one-year time period. The data
collection procedures were approved by our university’s IRB
through an expedited review procedure.
Evaluation Metrics. Accuracy, Precision and Recall are used
to evaluate single keystroke recognition. The accuracy for the
key k is defined as the percentage of the keystrokes that
are correctly classified as k among all keystrokes of k. The
precision of the key k is defined as TPk

TPk+FPk
and the recall

of the key k is defined as TPk

TPk+FNk
, where TPk, FPk, FNk

are the true positive rate, false positive rate, and false negative
rate for the key k, respectively.

Top-k Recognition Accuracy is used to evaluate the pass-
word recovery attack. Since our algorithm will return a number
of potential candidates in a descending order based on the
accumulated distance & orientation similarity, Top-k Success
Rate is defined as the probability of the first k candidates
containing the password input of the victim.

Word Recognition Rate (WRR) is used to evaluate paragraph
inference attack. WRR is the ratio of correctly recognized
words to the total number of words typed by the victims.
B. Performance of Single Keystroke Recognition

The single keystroke recognition performance for each key
is illustrated in Figure 11. We find that HTC Vive Pro
has prominent performance under both drum-based typing
and laser-based typing, most of which can reach over 90%
recognition accuracy with an average of 95.2% and 90.8%
accuracies, respectively. Although the overall performance is
slightly lower for Oculus Quest, we can still reach more
than 60% accuracy for most keys, with an average accuracy
of 91.7% for drum-based typing and 81.1% for laser-based
typing. Additionally, the precision/recall scores for each victim
are shown in Figure 12. For HTC Vive Pro, most precision
and recall scores of both drum-based and laser-based typing
are over 90.0%. For Oculus Quest, the total performance is a
bit lower but the precision/recall scores among most users are
still over 75.0%. The results demonstrate the effectiveness of
the proposed method on single keystroke recognition.

10

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0
T

op
-k

 R
ec

og
ni

tio
n

A
cc

ur
ac

y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 13. Performance of Recovering Passwords on Drum-based Typing.

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0
T

op
-k

 R
ec

og
ni

tio
n

A
cc

ur
ac

y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 14. Performance of Recovering Passwords on Laser-based Typing.

We find that the “Enter” key can always achieve very
high accuracy, which is highly likely due to its ‘isolated’
characteristics. We have also noticed that for some keys,
especially for laser-based typing on both HTC Vive Pro and
Oculus Quest, the accuracy is less than 60% (e.g. ‘s’ for HTC
Vive Pro and ‘x’ for Oculus Quest). We further look into the
misclassification results, and find that in most cases the false
prediction tends to be the neighboring keys of the ground truth.
However, we find this type of error is relatively insignificant
and can be easily corrected, detailed in Section VI-D.

C. Performance of Password Recovery

We further evaluate the designed attack under more practical
attack scenarios of deriving passwords. Figure 13 (a) and (b)
show the accuracy of inferring passwords with three different
lengths on HTC Vive Pro and Oculus Quest for drum-based
typing, respectively. We find that for HTC Vive, our attack
can achieve (60.0%, 58.3%, 61.7%) top-1, (81.7%, 71.7%,
76.8%) top-3, and (83.3%, 75.0%, 78.3%) top-5 recognition
accuracies on inferring passwords with 4, 6, and 8 keys,
respectively. For Oculus Quest, we find that the attack has
much better performance, with (66.7%, 60.0%, 83.3%) top-
1, (90.0%, 80.0%, 86.7%) top-3, and (91.7%, 96.7%, 88.3%)
top-5 recognition accuracies. An encouraging finding is that
Oculus Quest can achieve close to 85.0% top-1 success rate for
the key length of 8, indicating that longer key length may lead
to more severe password leakage. In addition, both headsets
have over 71.7% top-3 recognition accuracies for passwords
of all three lengths.

We also evaluate the password inference performance for
laser-based typing on both VR systems. The results are shown
in Figure 14 (a) and (b). We find that the attack achieves
high performance on Oculus Quest, with (76.7%, 68.3%,
73.3%) top-1, (88.3%, 95.0%, 88.3%) top-3, and (96.7%,
95.0%, 90.0%) top-5 recognition accuracies. We have similar

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
Victim ID

0.0

0.2

0.4

0.6

0.8

1.0

W
or

d
R

ec
og

ni
tio

n
R

at
e

HTC Vive Pro
Oculus Quest

(a) Drum-based typing

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
Victim ID

0.0

0.2

0.4

0.6

0.8

1.0

W
or

d
R

ec
og

ni
tio

n
R

at
e

HTC Vive Pro
Oculus Quest

(b) Laser-based typing

Fig. 15. Performance of Paragraph Inference Attack.

observations on inferring passwords with 4, 6 and 8 keys
on HTC Vive, and the attack can achieve (65.0%, 58.3%,
61.7%) top-1, (86.7%, 90.0%, 83.3%) top-3, and (86.7%,
93.3%, 86.7%) top-5 recognition accuracies. Both headsets
have over 86.7% top-5 success rate under laser-based typing.
We observe that the length of the password only has a subtle
influence on the success rate, which indicates the robustness
of our proposed attack.
D. Performance of Paragraph Inference

Figure 15 illustrates the WRR of recovering the sentences
listed in Table III that are typed by the victims. We observe that
our attack can accurately recover the language text typed by
the victims. Specifically, the average WRRs of HTC Vive Pro
are 80.8% and 85.1% for drum-based typing and laser-based
typing, respectively. The WRRs of Oculus Quest for drum-
based typing and laser-based typing are 89.3% and 93.3%,
respectively, which are even higher than HTC Vive Pro. Some
examples of the recovered paragraphs are shown in Figure 16.
Before error correction, we observe that there are only 1-2
false character predictions in a single word in most cases, and
almost all of them are caused by false predictions of the correct
key as one of its adjacent keys (e.g., recognize ‘o’ as ‘i’ or ‘i’
as ‘u’). However, this type of error is commonly considered
as typos or spelling & grammatical errors by online language
tools and thus can be easily corrected. Specifically, the lan-
guage tool can increase the WRR by 25.9% and 22.4% for
drum-based typing and laser-based typing, respectively. The
average WRR among all victims and both typing mechanisms
is 87.1%, which demonstrates the effectiveness of our attack
on recognizing natural language text inputs of the victim.

E. Impact of the Enter Key

We further evaluate the password recovery attack in the
“No-enter Key” scenario. Same with the aforementioned
methodology, we randomly generate passwords with lengths
of 4, 6, and 8 for each victim, but the “Enter” key is not
involved at last. We then use the brute force attack described
in Section V-E to infer the generated passwords. The results

11

Paragraph Typed by the Victim
there is a strong chance it will happen once more
the goose was brought straight from the old market
the marsh will freeze when cold enough

Recovered Paragraph

After Correction

Truth

Prediction Before Error Correction
there is a strong chance ut will happen ince mire
the giise was brought straighr from the old market
the marsg qukk frezw when cikd eniygh

Prediction After Error Correction
there is a strong chance it will happen once more
the goose was brought straight from the old market
the marsh quick freeze when cold enough

Fig. 16. Examples of Recovered Paragraph.

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 17. Performance of Recovering Passwords on Drum-based Typing
Without the Enter Key.

of drum-based typing and laser-based typing for the two VR
devices are shown in Figure 17 and Figure 18, respectively.
We find that the performance of inferring longer passwords
is significantly better than shorter passwords. We believe the
reason is that shorter passwords contain less distinguishable
positional information, making them more likely to be mixed
with false candidates. For instance, the trajectory of the
input password “Q-W-E-R” is nearly the same as “W-E-R-
T” or “E-R-T-Y”, making it hard to distinguish without the
“Enter” key, which has a fixed position. However, as longer
passwords cover a broader range of areas across the keyboard,
their trajectories can obtain a unique pattern more easily.
Specifically, under drum-based typing, both headsets achieve
over 46% top-3 and over 58% top-5 recognition accuracies
for passwords of length 4, and over 76% top-3 and over 82%
top-5 recognition accuracies for passwords of length 8. As
for laser-based typing, both headsets achieve over 44% top-3
and over 52% top-5 recognition accuracies for passwords of
length 4, and over 75% top-3 and over 88% top-5 recognition
accuracies for passwords of length 8. The promising results
indicate that our attack can be easily generalized to a more
challenging scenario in which the “Enter” key is not pressed.

VII. DISCUSSIONS

In this section, we will discuss the reasons why so many
sensors lack permission on VR, the underlying causes of
this vulnerability, as well as the limitations of the attack.
Additionally, we will also discuss potential approaches to
improve the management policies for VR sensors.
A. Why No Permission?

We believe one primary reason that so many sensors on VR
are zero-permission is that the community generally believes
they are “safe” and is not aware of to what extent they can

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 18. Performance of Recovering Passwords on Laser-based Typing
Without the Enter Key.

leak the user’s privacy, as the security and privacy vulnerability
issues on VR systems have not received significant attention
and we are one of the early studies in this research line.
Additionally, asking for too many permissions from the user
for different sensors lowers the usability and may raise too
much of a burden when having a great number of sensors
for the VR system. Another critical factor is that most users
do not pay enough attention to the permission systems and
will tend to grant permissions upon request. A usability
study on Android demonstrates that only 17% of the users
will pay attention to permission warnings during application
installation [18], indicating that even if permission exists, a
malware can simply ask for permission to sensor data under
some pretended reason, and then launch the attack without
being noticed.

B. Limitation
One limitation of our attack is that it requires the ad-

versary to possess knowledge of the keyboard layout (e.g.,
QWERTY), which means it cannot be effective on a keyboard
with a randomized layout. To mitigate this vulnerability,
developers could randomly change the position of the keys
on the keyboard, making them different from the standard
QWERTY layout [57], [56], [7], change the location of the
keyboard in the VR space after each character is entered
(keyboard jitter) [40], alter the shape of the keyboard, making
it not a rectangle (keyboard wrapping) [40], or circularly shift
keys in each row/column by a random number (row/column
shift) [32]. It should be noted that implementing these defense
mechanisms may lead to reduced usability and inconvenience
for users, as it may take more time and effort to type [43].
Specifically, row/column shift may increase the typing time
by 1.5 times [32], and most users may be less willing to use
a wrapped keyboard due to unfamiliarity with the layout [40].

C. Refine Sensor Management Policy in VR

Permission-based Sensor Management. One potential ap-
proach to improving VR sensor management is to implement a
permission-based scheme similar to the one used in Android.
Under this approach, users would be required to grant per-
mission for VR apps or webpages to access specific sensors
during both installation and runtime.

Privacy-aware Sensor Management. While adding per-
missions can enhance user privacy to some extent, it is
important to note that once permissions are granted, users may

12

not have full knowledge or control over how their sensor data
is used. To increase the transparency and control over data
usage, a privacy-aware framework upon the sensor manage-
ment scheme [55], [39] could be developed. Particularly, the
framework can provide information to help users understand
the context of sensor data usages, such as sensor types, starting
time, sensor usage duration, and the running status of the app
that is collecting sensor data (i.e., foreground or background).
Based on the contextual information, the framework can allow
users to create and update customized access control policies
for all the sensors. For instance, this would enable users to
restrict sensor data access for background apps when entering
sensitive information (e.g., passwords, contact information).
Furthermore, the framework can quantify the quality of sensor
data supplied to VR apps and allow the user to adjust the data
qualities (e.g., sampling rate, resolution) for a specific VR app.

Hardware Refinement. Another potential solution is to
integrate indicator lights into VR controllers, which would
alert users to any malicious sensor usage in the background.
This is especially important for on-board microphones and
front-facing cameras, which can record highly sensitive infor-
mation. As for motion and position sensors, these lights can
indicate whether they are being recorded in the background
(i.e., additional VR sessions to the primary VR app). By
incorporating indicator lights, users can be more aware of the
status of their sensors and whether they are being used without
their knowledge or consent.

VIII. RELATED WORK

Attacks on VR & Virtual Keyboards. Most of the initial
research on exploring the security and privacy implications of
VR systems focused on user authentication [28], [21], [20],
[33], [30], [12]. A recent work [10] has even introduced a
variety of new VR-based attacks that target the user’s expe-
rience. They demonstrate attacks that can disorient the user,
control hardware used for the VR experience, inject images in
the user’s field of vision, and encourage the user to move to
particular locations that may cause them to hit nearby objects.
Shi et al. [44] proposed Face-Mic, an eavesdropping attack that
leverages motion sensors on VR headsets to infer the user’s
live speech and identity. As for keystroke detection attacks
in VR, a study by Chen et al. [11] showed that VR headsets
could be configured with cameras in order to spy on the phone
keystrokes of nearby persons. Ling et al. [26] developed side-
channel attacks on the Samsung Gear VR system that can be
used to infer the passwords entered on the laser-based VR
keyboard using the positions and angles of the headset and
pointer controller. While this study has shown the feasibility of
such attacks, the proposed attacks only targeted a smartphone-
based VR system, and the required strong assumption greatly
reduces the attack feasibility in practice. Meteriz et al. [34]
present a keylogging inference attack to infer user inputs
typed with in-air tapping keyboards in Augmented Reality
(AR), and Luo et al. [29] propose a similar attack on in-
air tapping keyboards in Mixed Reality (MR). However, the
typing mechanisms considered in these two studies are hand-

gestured-based typing captured by the AR/MR device’s front
cameras, therefore these two approaches are not applicable to
drum- and laser-based typing mechanisms in VR that leverage
controllers. Different from AR and MR, controllers have been
considered as the major interaction interface in VR compared
with hands, as many popular VR headsets (e.g., HTC Vive
Pro) and apps (e.g., VRChat, Bigscreen) don’t support hand
tracking without additional software or hardware accessories.

Different from these studies, our work validates the attack’s
feasibility on the two mainstream VR systems (i.e., HTC Vive
Pro and Oculus Quest), for two interactive methods of typing,
under more practical attack models. Additionally, VR-Spy [5]
detects keystrokes in the VR space via channel state informa-
tion (CSI) from WiFi signals, which could be another attack
vector in this domain. However, VR-Spy requires labeled data
from victim for training and the victim’s position is fixed,
which largely limits its practicality.

Other Keystroke Attacks. There has been active research
on snooping keystrokes on physical keyboards/PIN pads lever-
aging various side-channels, including audio-based [58], [27],
EM-based [50], motion sensor-based [54], [52], and CSI-
based [17]. Additionally, many other research have focused
on attacking soft keyboards on touch screen for modern
smartphones leveraging the built-in motion sensors of the
smartphone [38], [35], [9] or the motion sensors on the
user’s smartwatch [53]. While certain principle concepts of
these keystroke attacks remain valid in the developing era
of VR devices, we again find ourselves in a new attack
space introduced by further technological advancements and
more comprehensive proof-of-concept validation. And as VR
devices are showing signs of popularity gains like that of
smartphones, the underlying threat of the unrestricted VR
sensors deserves to have greater attention.

IX. CONCLUSION

In this paper, we thoroughly examined the trustworthiness
of embedded sensors in VR systems and found that their
data can be easily accessed by an adversary. We further
explore the severity of this privacy leakage in the context
of keystroke snooping in VR. The adversary doesn’t possess
any knowledge about the victim’s VR system setting in our
considered attack model. Extensive experiments involving two
mainstream VR systems and different typing mechanisms
demonstrated the effectiveness of our attack on recognizing the
victim’s keystroke inputs, including both random passwords
and natural language text. We hope this study can provide
insights into the future design of sensor management policies
in VR and help increase the trustworthiness of VR systems.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their insightful feedback. This work was supported in part
by NSF grants CNS2114220, CNS2120396, CCF2211163,
CNS2114161, CNS2201465, CNS2152669, OAC2139358,
and ECCS2132106.

13

REFERENCES

[1] The best vr apps in 2022. https://www.creativebloq.com/features/
best-vr-apps, 2022.

[2] Demo videos of stealthy sensor data collection. https://sites.google.com/
view/vr-key-logger, 2022.

[3] Most popular apps in oculus. https://www.oculus.com/experiences/quest/
section/1453026811734318/\#/? k=xlg1bx, 2022.

[4] Most popular apps in vive port. https://www.viveport.com/app.html?
product list order=popular, 2022.

[5] Abdullah Al Arafat, Zhishan Guo, and Amro Awad. Vr-spy: A side-
channel attack on virtual key-logging in vr headsets. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR), pages 564–572. IEEE,
2021.

[6] ARPost. The benefits of virtual reality in banking. https://arpost.co/
2020/04/22/benefits-virtual-reality-banking/, 2020.

[7] S Arun Kumar, R Ramya, R Rashika, and R Renu. A survey on graphical
authentication system resisting shoulder surfing attack. In Advances in
Artificial Intelligence and Data Engineering, pages 761–770. Springer,
2021.

[8] Costas Boletsis and Stian Kongsvik. Controller-based text-input tech-
niques for virtual reality: An empirical comparison. International Journal
of Virtual Reality (IJVR), 19(3), 2019.

[9] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch
screen from smartphone motion. In HotSec, 2011.

[10] Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy. Immersive
Virtual Reality Attacks and the Human Joystick. IEEE Transactions
on Dependable and Secure Computing, 18(2):550–562, 2021.

[11] Song Chen, Zupei Li, Fabrizio Dangelo, Chao Gao, and Xinwen Fu.
A Case Study of Security and Privacy Threats from Augmented Reality
(AR). In 2018 International Conference on Computing, Networking and
Communications (ICNC), pages 442–446. IEEE, 2018.

[12] Yuxin Chen, Zhuolin Yang, Ruben Abbou, Pedro Lopes, Ben Y Zhao,
and Haitao Zheng. User authentication via electrical muscle stimulation.
In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1–15, 2021.

[13] HTC Corporation. Vive port. https://www.viveport.com/, 2021.
[14] HTC Corporation. Vive sync: The future of meetings. https://sync.vive.

com/, 2021.
[15] Valve Corporation. Openvr. https://partner.steamgames.com/doc/

features/steamvr/openvr, 2021.
[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.

A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231, 1996.

[17] Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu, and
Haojin Zhu. No training hurdles: Fast training-agnostic attacks to infer
your typing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1747–1760, 2018.

[18] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika
Chin, and David Wagner. Android permissions: User attention, com-
prehension, and behavior. In Proceedings of the eighth symposium on
usable privacy and security, pages 1–14, 2012.

[19] VR Focus. With gear vr gone the samsung xr service
is shutting down. https://www.vrfocus.com/2020/05/
with-gear-vr-gone-the-samsung-xr-service-is-shutting-down/, 2020.

[20] Markus Funk, Karola Marky, Iori Mizutani, Mareike Kritzler, Simon
Mayer, and Florian Michahelles. LookUnlock: Using Spatial-Targets
for User-Authentication on HMDs. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems, CHI EA
’19, pages 1–6. Association for Computing Machinery, 2019.

[21] Ceenu George, M. Khamis, Emanuel von Zezschwitz, Marinus Burger,
Henri Schmidt, Florian Alt, and Heinrich Hußmann. Seamless and
Secure VR : Adapting and Evaluating Established Authentication Sys-
tems for Virtual Reality. In Network and Distributed System Security
Symposium, NDSS ’17, 2017.

[22] Google. Daydream labs: exploring and sharing vr’s
possibilities. https://developers.googleblog.com/2016/05/
daydream-labs-exploring-and-sharing-vrs.html, 2016.

[23] VRChat Inc. Vrchat. https://hello.vrchat.com/, 2021.
[24] Jasoren. Vr military training – the next step of combat evolution. https:

//jasoren.com/vr-military-training-the-next-step-of-combat-evolution/,
2018.

[25] W Kündig. A least square fit program. Nuclear Instruments and methods,
75(2):336–340, 1969.

[26] Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei Yu, and Xinwen
Fu. I know what you enter on gear vr. In 2019 IEEE Conference on
Communications and Network Security (CNS), pages 241–249. IEEE,
2019.

[27] Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco
Gruteser. Snooping keystrokes with mm-level audio ranging on a single
phone. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, pages 142–154, 2015.

[28] Yujun Lu, BoYu Gao, Jinyi Long, and Jian Weng. Hand motion with
eyes-free interaction for authentication in virtual reality. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pages 714–715. IEEE, 2020.

[29] Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Holologger: Keystroke
inference on mixed reality head mounted displays.

[30] Shiqing Luo, Anh Nguyen, Chen Song, Feng Lin, Wenyao Xu, and
Zhisheng Yan. OcuLock: Exploring Human Visual System for Authen-
tication in Virtual Reality Head-mounted Display. In NDSS, 2020.

[31] James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA, 1967.

[32] Anindya Maiti, Murtuza Jadliwala, and Chase Weber. Preventing
shoulder surfing using randomized augmented reality keyboards. In
2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pages 630–635.
IEEE, 2017.

[33] Florian Mathis, Hassan Ismail Fawaz, and Mohamed Khamis.
Knowledge-driven Biometric Authentication in Virtual Reality. In
Extended Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI EA ’20, pages 1–10. Association for
Computing Machinery, 2020.

[34] Ulkü Meteriz-Yıldıran, Necip Fazıl Yıldıran, Amro Awad, and David
Mohaisen. A keylogging inference attack on air-tapping keyboards in
virtual environments.

[35] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. Tapprints: Your finger taps have fingerprints. In
Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, page 323–336. Association
for Computing Machinery, 2012.

[36] Mozilla. Firefox reality. https://mixedreality.mozilla.org/firefox-reality/,
2021.

[37] MIT News. Bringing the benefits of in-person collaboration to the virtual
world. https://news.mit.edu/2020/spatial-vr-collaboration-0710, 2020.

[38] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Ying
Zhang. Accessory: password inference using accelerometers on smart-
phones. In HotMobile ’12, 2012.

[39] Nisarg Raval, Ali Razeen, Ashwin Machanavajjhala, Landon P Cox,
and Andrew Warfield. Permissions plugins as android apps. In
Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, pages 180–192, 2019.

[40] Eric Tanner Reed. The Use of Alternative Keyboard Structures to
Prevent Shoulder Surfing Attacks in Augmented Reality. PhD thesis,
Christopher Newport University, 2020.

[41] Grand View Research. Virtual reality market size, share & trends anal-
ysis report by technology (semi & fully immersive, non-immersive), by
device (hmd, gtd), by component (hardware, software), by application,
and segment forecasts, 2021 - 2028. https://www.grandviewresearch.
com/industry-analysis/virtual-reality-vr-market\#, 2021.

[42] EH Rothauser. Ieee recommended practice for speech quality measure-
ments. IEEE Trans. on Audio and Electroacoustics, 17:225–246, 1969.

[43] Young Sam Ryu, Do Hyong Koh, Brad L Aday, Xavier A Gutierrez,
and John D Platt. Usability evaluation of randomized keypad. Journal
of Usability Studies, 5(2):65–75, 2010.

[44] Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian
Liu, Nitesh Saxena, Yingying Chen, and Jiadi Yu. Face-mic: inferring
live speech and speaker identity via subtle facial dynamics captured by
ar/vr motion sensors. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 478–490,
2021.

[45] Facebook Technologies. Oculus platform sdk. https://developer.oculus.
com/downloads/package/oculus-platform-sdk, 2021.

[46] Facebook Technologies. Supplemental oculus data policy. https://www.
oculus.com/legal/privacy-policy/, 2021.

[47] Tvori. Tvori. https://tvori.co/, 2021.

14

[48] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms
for scientific computing in python. Nature methods, 17(3):261–272,
2020.

[49] Immersion VR. Vr for tourism. https://immersionvr.co.uk/about-360vr/
vr-for-tourism/, 2020.

[50] Martin Vuagnoux and Sylvain Pasini. Compromising electromagnetic
emanations of wired and wireless keyboards. In USENIX Security
Symposium, 2009.

[51] W3C. Webxr device api. https://immersive-web.github.io/webxr/, 2021.
[52] Chen Wang, Xiaonan Guo, Yan Wang, Yingying Chen, and Bo Liu.

Friend or foe? your wearable devices reveal your personal pin. In
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 189–200, 2016.

[53] Chen Wang, Jian Liu, Xiaonan Guo, Yan Wang, and Yingying Chen.
Wristspy: Snooping passcodes in mobile payment using wrist-worn
wearables. In IEEE International Conference on Communications, 2019.

[54] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Motion
leaks through smartwatch sensors. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, pages
155–166, 2015.

[55] Zhi Xu and Sencun Zhu. Semadroid: A privacy-aware sensor man-
agement framework for smartphones. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pages 61–72,
2015.

[56] Dhruv Kumar Yadav, Beatrice Ionascu, Sai Vamsi Krishna Ongole, Aditi
Roy, and Nasir Memon. Design and analysis of shoulder surfing resistant
pin based authentication mechanisms on google glass. In International
conference on financial cryptography and data security, pages 281–297.
Springer, 2015.

[57] Ruide Zhang, Ning Zhang, Changlai Du, Wenjing Lou, Y Thomas Hou,
and Yuichi Kawamoto. Augauth: Shoulder-surfing resistant authentica-
tion for augmented reality. In 2017 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2017.

[58] Li Zhuang, Feng Zhou, and J. Doug Tygar. Keyboard acoustic emana-
tions revisited. ACM Transactions on Information and System Security,
13:3, 2009.

APPENDIX A
EXTRACTING SENSOR DATA USING ANDROID SDK

To demonstrate that the sensor data of victim’s controllers
can be logged in the back-end on Android systems, we also
implement a VR application leveraging Android SDK APIs to
evaluate our proposed eavesdropping attack. For most VR sys-
tems, they are built grounded on Android systems, which pro-
vide open interfaces for VR application developers to achieve
their proposed functions. Specifically, for motion and position
sensors, which are denoted to be TYPE_(SENSORS_NAME)
in Android development APIs, can be monitored via the
creation of SensorEvent created by Android systems.
For each SensorEvent, they continuously track the multi-
dimensional arrays (e.g., acceleration and position of the x,
y, z coordinates) of sensor values. Meanwhile, the clicking
event will be detected through MotionEvent. Once the
user clicks the button on the VR controllers, the attribute
onTouchEvent() of MotionEvent will be activated. To
sum up, the comprehensive support of Android SDK APIs
makes it possible to track user’s motion and clicking events
through an Android application, which can be leveraged by
our attack in VR systems.

APPENDIX B
TYPING MECHANISMS & KEYBOARD LAYOUTS IN

POPULAR VR APPLICATIONS

We summarize the typing mechanism & keyboard layouts
in popular VR applications in Table II.

APPENDIX C
SELECTED HARVARD SENTENCES

The randomly selected Harvard sentences are listed in
Table III.

APPENDIX D
PERFORMANCE EVALUATION OF MACHINE LEARNING

ALGORITHMS

We further examine the possibility of using state-of-the-art
machine learning algorithms on the sensor data for keystroke
inference. Specifically, the adversary slices a window of 0.5
seconds of sensor data centered at each detected keystroke.
The adversary then extracts 13 time-domain features from the
window for each dimension, including minimum, maximum,
median, variance, std, abs-mean, cv, skewness, kurtosis, first
quartiles, second quartiles, third quartiles, inter quartile-range.
Given the 3D position and orientation sensor data, each
keystroke forms a 78-dim feature vector. We then utilize
four types of machine learning classifiers: Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), and a two-dense-layer Deep Neural Network (DNN)
with 50 neurons in each layer. In addition to time-domain
features, we also apply Recurrent Neural Network (RNN)
on the raw time-series sensor data to measure the temporal
dependencies and extract high-level features. Specifically, We
utilize a 2-layer RNN architecture, and the extracted features
are fed into a dense layer for classification. We use the
adversary’s data as the training data and other participants’
data as testing data, therefore the training/testing ratio is 1 :
6 for each typing mechanism. We find that the average single
keystroke recognition accuracies of the five machine-learning-
based approaches for four typing mechanisms are only 5.96%,
12.33%, 8.59%, and 12.99%. As the position and orientation of
the virtual keyboard differ a lot between the adversary and the
victim, their sensor data exhibits completely different patterns,
making it hard to use machine-learning-based approaches to
recognize the victim’s typed inputs.

APPENDIX E
PERFORMANCE EVALUATION ON ANDROID APP

The developed malicious Android app is installed on the
Oculus Quest. We use the default virtual keyboard of the
Android Notes app for both drum-based and laser-based typ-
ing. We find that keyboard layouts in Android apps are very
similar to the Oculus default keyboard, therefore we directly
use the previously reconstructed keyboard using Oculus as
the adversary’s reference pattern. We recruit one participant
to act as victim and perform the same data collection pro-
cedure as aforementioned in Section VI-A. Figure 19 (a)
and (b) illustrate the performance of the password inference

15

TABLE II
TYPING MECHANISMS & KEYBOARD LAYOUTS IN POPULAR VR APPLICATIONS.

Application Usage Typing Mechnism Keyboard Layout
Text Editors in Oculus Quest Typing Drum/Laser QWERTY, numeric on the top, Enter on the right

Steam VR Social Platform & Shopping Laser QWERTY, numeric on the top, Enter on the right
Vive Port Shopping Drum QWERTY, numeric on the top, Enter on the right

Vive Video Video Player Drum QWERTY, numeric on the top, Enter on the right
Youtube VR Video Player Laser QWERTY, numeric on the left, Enter on the right
Vive Sync Online Meeting & Collaboration Laser QWERTY, numeric on the top, Enter on the right

Tvori Design/Creation Drum QWERTY, numeric on the top, Enter on the right
Google Daydream Lab Design/Creation Drum QWERTY, no numeric & Enter

Gravity Sketch VR Design/Creation Drum QWERTY, numeric on the top, no Enter
VRChat Social Platform Laser QWERTY, numeric on the top, Enter on the bottom

Alterspace VR Social Platform Laser QWERTY, numeric on the top, Enter on the bottom
Bigscreen Social Platform Laser QWERTY, numeric on the top, Enter on the bottom
Rec Room Social Platform Laser QWERTY, numeric on the top, Enter on the right

TABLE III
SELECTED HARVARD SENTENCES

Index Sentence
1 The fruit of a fig tree is apple shaped
2 Hold the hammer near the end to drive the nail
3 There is a strong chance it will happen once more
4 The goose was brought straight from the old market
5 The case was puzzling to the old and wise
6 The pup jerked the leash as he saw a feline shape
7 The weight of the package was seen on the high scale
8 A good book informs of what we ought to know
9 The marsh will freeze when cold enough

10 The steady drip is worse than a drenching rain

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(a) Laser-based Typing

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Drum-based Typing

Fig. 19. Performance of Recovering Passwords on Android.

attack on the Android app for laser-based and drum-based
typing, respectively. We achieve (85%, 43%, and 52%) top-
1, (89%, 78%, 87%) top-3, and (91%, 88%, and 92%) top-
5 accuracies on inferring passwords with length 4, 6, and
8 for laser based typing, and (62%, 55%, and 40%) top-1,
(87%, 85%, 75%) top-3, and (98%, 95%, and 95%) top-5
accuracies for drum-based typing. Additionally, we achieve
94.8% and 91.6% WRR for the paragraph inference attack for
laser- and drum-based typing, respectively. These promising
results demonstrate that our attack can be easily generalized
to Android VR systems.

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 20. Impact of Upper Cases and Symbols on Drum-based Typing.

APPENDIX F
IMPACT OF UPPER CASES AND SYMBOLS

We further extend the password recovery attack by involving
upper cases and symbols. For each typing scenario, one
participant acts as the adversary, and the other participant is
treated as the victim. In addition to the aforementioned 38
keys, we also include 10 different symbols (i.e., - = [] \ ;
’ , . /) and the CapsLock key in the data collection session.
For each victim, we generate 10 different passwords following
the aforementioned methods with lengths of 4, 6, and 8. We
ensure there is at least one upper case and one symbol in each
password. The results of drum-based typing and laser-based
typing for the two VR devices are shown in Figure 20 and
Figure 21, respectively. We find that the impact of using upper
cases and symbols in the password on the attack performance
is very subtle: under drum-based typing, both headsets achieve
over 69% top-3 and over 79% top-5 recognition accuracies for
passwords of all three lengths. Laser-based typing performs
even better: both headsets have over 75% top-3 and over 81%
top-5 recognition accuracies. The promising results indicate
that our attack can be easily generalized to more complex
passwords.

APPENDIX G
IMPACT OF DIFFERENT KEYBOARD LAYOUTS

We further investigate the worst-case scenario, in which the
adversary does not possess any prior knowledge of the victim’s
keyboard layout and uses a completely different keyboard to
infer the victim’s typed paragraph. Since all virtual keyboards
in Table II follow the standard QWERTY layout for alphabets,

16

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0
T

op
-k

 R
ec

og
ni

tio
n

A
cc

ur
ac

y

Length = 4
Length = 6
Length = 8

(a) HTC Vive Pro

1 2 3 4 5
k

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-k
 R

ec
og

ni
tio

n
A

cc
ur

ac
y

Length = 4
Length = 6
Length = 8

(b) Oculus Quest

Fig. 21. Impact of Upper Cases and Symbols on Laser-based Typing.

Vive
Drum

Vive
Laser

Oculus
Drum

Oculus
Laser

Typing Scenario

0.0

0.2

0.4

0.6

0.8

1.0

W
or

d
R

ec
og

ni
tio

n
R

at
e

Same Layout
Different Layouts

Fig. 22. Impact of different keyboard layouts

we believe our paragraph inference attack would still be
effective even if the adversary’s VR keyboard is different
from the one used by the victim. To validate this, for each
typing scenario (i.e., drum- and laser-based typing on Vive
and Oculus, in total four different scenarios), we let the
adversary use the three different keyboards utilized in other
typing scenarios to infer the paragraph typed by the victims.
The average WRR for each scenario is shown in Figure 22.
Although the attack performance decreases due to different
structures and distances between keys, we can still achieve
an average WRR of 68.7% and 72.6% for drum-/laser-based
typing on Vive, and 76.3% and 86.4% WRR for drum-/laser-
based typing on Oculus. These promising results show the
potential generality of our attack across different keyboard
layouts.

APPENDIX H
OTHER KEYBOARD SCHEMES

We mainly focus on the QWERTY keyboards in this paper
as this layout is utilized in almost every mainstream VR
application. The adversary can include the keyboards of other
layouts (e.g., QWERTZ, AZERTY, and Dvorak) during the
keyboard reconstruction phase to improve the generalizability
of the attack.

17

