
WearID: Low-Effort Wearable-Assisted Authentication of Voice
Commands via Cross-Domain Comparison without Training

Cong Shi

WINLAB, Rutgers University

New Brunswick, NJ, US

cs1421@winlab.rutgers.edu

Yan Wang

Temple University

Philadelphia, PA, US

y.wang@temple.edu

Yingying Chen

WINLAB, Rutgers University

New Brunswick, NJ, US

yingche@scarletmail.rutgers.edu

Nitesh Saxena

University of Alabama at Birmingham

Birmingham, AL, US

saxena@uab.edu

Chen Wang
∗

Louisiana State University

Baton Rouge, LA, US

chenwang1@lsu.edu

ABSTRACT
Due to the open nature of voice input, voice assistant (VA) systems

(e.g., Google Home and Amazon Alexa) are vulnerable to various se-

curity and privacy leakages (e.g., credit card numbers, passwords),

especially when issuing critical user commands involving large

purchases, critical calls, etc. Though the existing VA systems may

employ voice features to identify users, they are still vulnerable

to various acoustic-based attacks (e.g., impersonation, replay, and

hidden command attacks). In this work, we propose a training-free

voice authentication system,WearID, leveraging the cross-domain
speech similarity between the audio domain and the vibration do-

main to provide enhanced security to the ever-growing deployment

of VA systems. In particular, when a user gives a critical command,

WearID exploits motion sensors on the user’s wearable device to

capture the aerial speech in the vibration domain and verify it with

the speech captured in the audio domain via the VA device’s micro-

phone. Compared to existing approaches, our solution is low-effort

and privacy-preserving, as it neither requires users’ active inputs

(e.g., replying messages/calls) nor to store users’ privacy-sensitive

voice samples for training. In addition, our solution exploits the

distinct vibration sensing interface and its short sensing range to

sound (e.g., 25𝑐𝑚) to verify voice commands. Examining the simi-

larity of the two domains’ data is not trivial. The huge sampling

rate gap (e.g., 8000𝐻𝑧 vs. 200𝐻𝑧) between the audio and vibra-

tion domains makes it hard to compare the two domains’ data

directly, and even tiny data noises could be magnified and cause

authentication failures. To address the challenges, we investigate

the complex relationship between the two sensing domains and

develop a spectrogram-based algorithm to convert the microphone

data into the lower-frequency “ motion sensor data” to facilitate
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Figure 1: Illustration of the proposed idea in WearID - ex-
ploring the complement of the vibration domain to defend
against audio-based attacks, e.g., impersonation, replay, hid-
den voice command and ultrasound attacks.

cross-domain comparisons. We further develop a user authentica-

tion scheme to verify that the received voice command originates

from the legitimate user based on the cross-domain speech sim-

ilarity of the received voice commands. We report on extensive

experiments to evaluate the WearID under various audible and

inaudible attacks. The results show WearID can verify voice com-

mands with 99.8% accuracy in the normal situation and detect

97.2% fake voice commands from various attacks, including imper-

sonation/replay attacks and hidden voice/ultrasound attacks.
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1 INTRODUCTION
In recent years, smart devices (e.g., Google Home and Amazon

Alexa) have incorporated advanced speech recognition technolo-

gies that enable the devices to understand natural language and

take voice commands. By using voices as inputs, users can smoothly

and conveniently interact with their voice assistant (VA) systems

to accomplish numerous daily tasks, such as playing music, manag-

ing calendar events, shopping online and controlling smart home

appliances. With the growing trend of using VA systems, more and

more people tend to use voice commands to complete important

tasks. For example, making a big purchase (e.g., over 100 dollars),

unlocking the entrance door to a house, or making a critical call

https://doi.org/10.1145/3427228.3427259
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Table 1: Comparing WearID with potential security solutions to secure critical voice commands.

Requiring user

active input

Requiring training and

storing voice templates

Requiring audio

playback

Requiring dedicated

sensor

Vulnerable to audible

attacks [30, 42]

Vulnerable to inaudible

attacks [12, 51]

WearID (Our Solution) ✕ ✕ ✕ ✕ ✕ ✕

One-tap two-factor authentication [37] ✔ ✕ ✕ ✕ ✕ ✕

SMS/call-based two-factor authentication [21] ✔ ✕ ✕ ✕ ✕ ✕

Audio CAPTCHA (suggested in [12]) ✔ ✕ ✕ ✕ ✕ ✕

Voice biometric-based authentication [39, 44] ✕ ✔ ✕ ✕ ✔ ✔

Two microphone authentication (2MA) [10] ✕ ✕ ✔ ✕ ✔ ✕

Defenses against inaudible attacks [12, 51] ✕ ✔ ✕ ✕ ✔ ✕

Defense with smartphone motion sensor [46] ✕ ✔ ✔ ✕ ✔ ✕

VAuth [20] ✕ ✕ ✕ ✔ ✕ ✕

(e.g., calling a bank for conducting transactions [45]). We call these

voice commands as highly critical commands since the commands

could access highly sensitive information and functionalities (e.g.,

credit card numbers, passwords, and payments). The significant

financial benefits of using such highly critical commands lure ad-

versary into faking the user’s commands and put the user’s privacy

and property under high risks. For instance, the adversary can get

a user’s credentials for accessing personal devices by asking, “OK,

Google, what is my password?” [8] The adversary can also make

a significant amount purchase through the user’s associated ac-

count [9] by telling the VA system “Alexa, Order a MacBook from

Prime Now.” When the adversary can access the VA system at home

remotely (e.g., through a hacked Smart TV), the adversary can even

use critical commands to control security critical IoT devices [15],

such as disarming a smart locking system and gain entry into the

house. To ensure the successful large-scale deployment of VA sys-

tems, it is critical to address these inherited security vulnerabilities

in VA systems and bring trustworthiness to users. In this work, we

thus aim to design a low-overhead system with enhanced security

that could protect highly critical commands in VA systems.

Existing Solutions. Existing authentication and defensemecha-

nisms for VA systems relying on voice biometric technologies [3, 22,

26, 39, 44, 46] use users’ unique sound characteristics and machine

learning-based models for user authentication. These solutions

solely rely on acoustic features in the audio domain (i.e., extracting

information from the data captured by microphones). Thus they are

vulnerable to acoustics attacks, either audible attacks (e.g., replay

attacks [30] and impersonation attacks [42]) or more surreptitious

inaudible attacks (e.g., hidden voice commands [12] and ultrasound

attacks [51]). To add another layer of defense, some VA systems

exploit a second factor to secure voice commands, such as challenge

questions via audio CAPTCHA [12], replay messages/calls [21], or

virtual buttons [37] on the user’s mobile device (e.g., smartphone).

However, these approaches require significant user efforts to con-

firm the authenticity of each single voice command. Furthermore,

they could be prone to user careless behaviors [19] of habituations

of confirming, meaning the attack attempts may be accepted with-

out paying attention. Recently, VAuth [20] develop a system that

utilizes the user’s facial vibrations captured by accelerometers em-

bedded in a pair of glasses for user authentication. The dedicated

sensors requiring a high sampling frequency of 11kHz entail addi-

tional costs, making the system not practical. While 2MA [10] needs

to use multiple spatially distributed microphones, which leads to

extra cost and considerable energy consumption. Moreover, this

approach only works in the audio domain alone so that they are still

vulnerable to the attacks in the audio domain. We summarize the

weaknesses of the state-of-the-art voice authentication techniques

in Table 1.

Our Approach. In this paper, we explore the feasibility of lever-

aging wearables’ accelerometers to harness the aerial voice vibra-

tions corresponding to live human speeches for user authentica-

tion. We propose a low-effort training-free user authentication

system,WearID. It utilizes the wearable as a personal identity token
and performs cross-domain authentication (audio vs. vibration) to

verify the identity of the person who gives the voice command.

WearID provides a scalable solution that would enable using VA

under high-security-level scenarios (e.g., nuclear power stations,

stock exchanges, and data centers), where all voice commands

are critical and desire around-the-clock authentication. It is also

compatible with existing voice-based authentication methods in

VA systems (e.g., Google Voice Match and Amazon Alexa Voice

Profile), where WearID could be invoked when critical commands

are detected. Compared with existing voice biometric technolo-

gies [39, 44],WearID does not require extra user efforts (e.g., answer-

ing challenging questions and replyingmessages/calls) or additional

training using privacy-sensitive voice samples. In addition, WearID

reuses wearable devices that have already been widely accepted

worldwide (i.e., 593 million in 2018 [40]), making it low-cost and

more practical than the two most similar approaches, VAuth [20]

and 2MA [10]. Moreover, our solution is different from existing

two-factor authentication methods using co-location information

(e.g., WiFi [29], Bluetooth [38], and ambient sound and light [23]),

since it can resist the acoustic attacks as mentioned above.

The basic idea of WearID is examining the similarity between the

unique voice characteristics in the aerial speech vibration and the

audio voice for user authentication. As shown in Figure 1, triggered

by a wake word detected at the VA device, WearID exploits the

wearable’s accelerometer and VA’s microphone to capture voice

commands in the vibration domain and audio domain at the same

time, respectively. The voice commands recording data are sent to

a cloud server for user authentication. To realize the cross-domain

similarity comparison, we develop a training-free algorithm that

converts high-fidelity microphone data into a low-fidelity alias-

ing form and correlates the time-frequency characteristics of the
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speech signals in the vibration domain and the audio domain to

verify the voice command. The algorithm could be easily integrated

with existing VA systems and wearables without any hardware

modification.

Recent studies [32, 52] have shown the initial success of using

motion sensors on smartphones to capture the speaker’s voice.

However, examining the cross-domain similarity in practical sce-

narios using aerial speech vibrations captured by motion sensors

in wearables is nontrivial. First, the unique response of the wear-
able’s motion sensor to aerial speech and the associated acoustic

characteristics in the vibration domain remains unclear. Second,
the heterogeneous hardware designs and the huge sampling rate

gap (e.g., 8000𝐻𝑧 vs. 200𝐻𝑧) make it hard to compare the acoustic

characteristics from the vibration and audio domains directly. Thus,

we must quantify the relationship between two distinct domains to

support a training-free user authentication approach. Third, the syn-
chronization of the data collection in totally different hardware is

difficult. Fourth, the proposed system should defend against various

audible [30, 42] and inaudible attacks [12, 51].

To ensure reliable cross-domain comparison, we extensively

study response distances and unique characteristics of aerial speech

vibrations captured by wearables. We develop a spectrogram-based

method to model the complex relationship between the voice com-

mand signals in the vibration and the audio domains and enable

similarity comparison between them. Particularly, we propose to

convert the spectrogram of high-frequency microphone data to the

low-frequency aliasing one that is comparable to the accelerometer

spectrogram. To enhance the reliability, we quantify the frequency

selectivities of the accelerometer and the microphone and select the

frequency components that are sensitive for both sensing modali-

ties for comparison. Moreover, to address the residual synchroniza-

tion errors caused by network delay, we develop a 2D-correlation

based method to align the spectrograms of the two sensing do-

mains through searching for an offset that results in the maximum

correlation.

Our Contributions:

• We show that the aerial speech vibrations of human voices can

be captured by the accelerometer embedded in wearable devices.

This could serve as an additional domain (i.e., vibration domain)

to the original audio domain to verify the highly critical com-

mands of the user and provide enhanced security for the VA

system.

• We propose a unique voice command authentication system,

WearID, which can be easily integrated with the existing VA

systems and wearable devices without making any hardware

modifications. The system is low-effort and privacy-preserving

as it does not require any prior training, and therefore does not

need to store privacy-sensitive voice sample templates.

• We leverage the accelerometer’s short response distance to voice

to effectively prevent the impersonation/replayed sounds from

accessing the wearable. We derive the unique spectral relation-

ship between the aerial speech vibrations captured by wearables’

accelerometers and the audio recorded by VA’s microphones, we

propose cross-domain comparison that can effectively examine

the similarity of weak and low-resolution signals in the vibration

domain the and speech signals in the audio domain.

• We conduct extensive experiments and user studies with differ-

ent smartwatches models and participants, which result in 600
human voice segments. The results show that WearID can au-

thenticate user’s voice commands with 99.8% accuracy in the

normal situation and detect 97.2% of various impersonation and

replay attacks with a low false negative rate of 2%. When under

the hidden voice and ultrasound attacks [51], WearID achieves

close to 100% accuracy of authenticating the users.

2 RELATEDWORK
Audio-domainVoiceAuthentication and Security Issues.The
traditional user authentication methods designed for voice access

systems mainly extract each individual’s voice features in the audio

domain to identify users [11, 25, 26, 36, 44, 48]. Mel-Frequency

Cepstral Coefficients (MFCCs) [33] and Spectral Subband Centroids

(SSCs) [28] describe a voice’s timbre and vocal-tract resonances and

are widely used as unique voice features to distinguish users. The

modulation frequency [6] capturing formant and energy transition

details of a voice sound contains speaker-specific information for

user identification. However, only relying on the audio-domain

features has been shown to be vulnerable to acoustic-based attacks.

For example, an adversary can spoof the legitimate user to pass a

voice authentication system by recording and replaying a user’s

voice sound [30]. Moreover, the adversary can study the user’s daily

speech to impersonate or synthesize the user’s voice to pass the

voice authentication [17, 30, 42].

WearIDVersus OtherAuthenticationMethods. Rather than
using voice features, recent research studies propose to defend

against replay attacks by determining the liveness of sound source [14,

53, 54]. Specifically, Chen et al. [14] examine the unique magnetic

field patterns generated by electro-acoustic transducers to detect

loudspeaker-generated voice. VoiceLive [54] and VoiceGesture[53]

detect the dynamic acoustic characteristics (via time-difference-

of-arrival and Doppler shifts) that only occur in human voices to

identify liveness. However, these approaches focus on smartphones

and require users to place the smartphone’s microphone close to

the mouth. Thus, they are not applicable to the VA systems (e.g.,

Google Home and Amazon Alexa) that allow users to give voice

commands freely from a distance. Feng et al. [20] develop a user

verification system for the VA systems by capturing the user’s fa-

cial vibrations via an accelerometer with high-sampling rate (i.e.,

11kHz) embedded in a pair of glasses. The vibrations are then com-

pared with the voice recorded by the VA system to verify whether

the voice command is given by the legitimate user wearing the

glasses. In contrast, WearID addresses a more challenging prob-

lem as it studies much weaker and low-resolution aerial speech

vibration signals sampled by wearable accelerometers at 100Hz.

With such a capability, WearID can be seamlessly integrated into

wrist-worn wearable devices (e.g., smartwatches, fitness trackers)

that are already widely accepted worldwide.

Vibration-domain Voice Recognition. Recent studies show
that the MEMS motion sensors (e.g., accelerometer and gyroscope)

are able to capture acoustic sounds [5, 16, 24, 32, 52]. Gyrophone [32]

utilizes the gyroscope in a smartphone to recognize the speaker’s in-

formation (e.g., gender and speaker identity) from the speech played

by a loudspeaker. Accelword [52] leverages the accelerometer in
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a smartphone rather than a microphone to recognize the user’s

wake word sound(e.g., Siri), which reduces the energy consump-

tion. Speechless [4] further analyzes the speech privacy leakage,

including the speech content from the smartphone motion sensors

under various attacking scenarios. These works require much effort

to train the system with motion sensor data and do not reveal the

relationship between the sensor readings and real voice recorded by

microphones. Spearphone [5] uses the accelerometer of the smart-

phone to eavesdrop speeches from the vibrations generated from

the built-in loudspeaker, which requires the accelerometers and

the loudspeakers on the same device. The impacts of aerial speech

vibrations on the motion sensors in wearables are not yet clear.

3 ATTACK MODEL
We consider an adversary who is interested in obtaining the user’s

private/sensitive information or exerting an unpermitted operation

through critical voice commands on the VA device shared among

multiple users (e.g., at an office or home). We assume that the

adversary cannot physically break the VA device, take control of

the VA cloud service, or get the possession of the user’s wearable

device. We summarize the potential attacks in two major categories:

Attack onUser’sAbsence.This type of attacks can be launched
when the user is away from the VA device. The adversary tries to

get close to the VA device and fool the VA system by using his own

voice or audio playback techniques:

• RandomAttack. The adversary does not have the prior knowledge
of the victim’s voice and attempts to fool the VA system with

his own voice. Despite the simple approach, such attacks can

achieve a considerable attack success rate of about 3.5% [50] on

state-of-the-art speaker verification approaches.

• Impersonation Attack. An experienced adversary that has the

knowledge of the victim’s voice could try to spoof the VA system

by mimicking the victim’s voice. The adversary can produce the

voice sound by using speech synthesis techniques and playback

devices (e.g., loudspeaker).

• Replay Attack. The adversary tries to capture the victim’s voice

commands via a recording device (e.g., the microphone of a smart-

phone) and replay the recorded voice via a loudspeaker, attempt-

ing to fool the VA system.

Co-location Attack. This type of attacks can be launched sur-

reptitiously even when the victim is present near the VA device:

• Hidden Voice Command Attack. The adversary could inject the

recorded user’s voice commands into the background music or

the audio channel of video streams [49]. He could also provide

hidden voice commands that exploit the underlying mechanisms

(e.g., GMM-HMMmodels [12]) of VA systems. Such attacks could

stealthily spoof the VA systems without being perceived by hu-

man subjects. To avoid being noticed from the audible reply, an

adversary can first control the volume to mute the VA device via

hidden voice commands.

• Ultrasound Attack. The adversary could modulate the recorded

voice commands of a victim to the ultrasound frequency band (i.e.,

≥ 20𝐾𝐻𝑧), and use the modulated sound to fool the VA system

stealthily. Although human ears cannot hear the modulated voice

commands, they could be recognized by existing VA systems due

to the non-linearity of the microphone [51].

Time-frequency 
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Feature Extraction and

Domain Conversion
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Voice Assistant Device 
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Collection

Wearable Device
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Figure 2: User authentication overview.

4 USER AUTHENTICATION DESIGN
4.1 Why Wearable? Why Motion Sensor?
Since the number of wearable users has reached half a billion world-

wide [40], it is natural for us to explore such pervasiveness and use

wearable devices in our design. These devices are usually worn on

the user body and rarely left unattended, making it eligible as a

trusted device. For example, smart wristbands have been used as a

replacement to student ID card [1] since they are hard to forget to

carry. As another example, smartwatches have been accepted as a

convenient and valid security token for contactless payment [34].

In this paper, we propose to utilize motion sensors in commercial

wearable devices (e.g., smartwatches, smart wristbands, and activity

trackers) to capture users’ voice commands for user authentica-

tion. We choose to use motion sensors because it captures distinct

characteristics of voice sound in the vibration domain. Such unique

characteristics are harder to forge compared to the voice sound cap-

tured by microphones. As a result, our system enables VA systems

to resist acoustic-based attacks, including audible and inaudible

attacks, which can effectively attack existing user authentication

methods for VA systems. The effectiveness of WearID on defend-

ing the audible attacks and the inaudible attacks are discussed in

Section 7.3 and Section 7.4, respectively.

4.2 Challenges
In order to conduct cross-domain comparison for user authentica-

tion, a number of challenges need to be addressed.

• Weak Response to Human Speech. Due to the design pur-

pose of measuring acceleration force, wearables’ accelerometers

have weak responses to aerial speech vibrations caused by hu-

man speeches while being sensitive to human motions that are

considered as noises in our system. Such inherited character-

istics of accelerometers make it difficult to determine speech
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Figure 3: Hardware flow of microphone and motion sensor.

segments and disentangle aerial speech vibrations from noisy

accelerometer readings.

• ComplexCross-domainRelationship.Comparing human speech

representations in the vibration domain and those in the audio

domain is challenging. The heterogeneous hardware designs lead

to distinctive frequency-selectivity patterns in accelerometer and

microphone readings, making it hard to find similar acoustic

characteristics through cross-domain comparisons. Moreover,

the huge sampling rate gap (i.e., 8000𝐻𝑧 versus 200𝐻𝑧) of the
two different sensors render any direct comparison between the

vibration signals and the audio signals impossible.

• Coarsely synchronized acoustic signals in two domains.
Network delay introduces unpredictable offsets between the vi-

bration signals captured with the wearable and the audio signals

recorded with the VA device. It is necessary to align the signals

from the two sensors for a reliable comparison.

4.3 System Flow
Toward this end, we develop a wearable-assisted low-effort user

authentication system, WearID, which verifies the authenticity of

critical voice commands by examining the cross-domain similarity

of the unique voice characteristics captured with accelerometer

of the wearable device and microphone of the VA device. As illus-

trated in Figure 2, after a critical command/wake word is detected

by the VA system, the system performs the Coarse-grained Syn-
chronization to ensure that the VA and wearable devices start the

data collection process simultaneously. Depending on the network

condition (e.g., WiFi network delay), we develop two approaches for

the Coarse-grained Synchronization. When the network delay is low

and suitable for synchronization, theWiFi Communication-based
Approach allows the VA device to detect the critical command/wake

word, start its data collection, and send a notification to trigger the

data collection on the wearable via theWiFi connection. Since there

is a growing trend of having the motion sensors always activated on

a wearable device (e.g., for fitness tracking), we propose an alterna-

tive solution, the Parallel Wake-word Detection-based Approach, for
the cases of high network delay. In particular, the system exploits

the accelerometers on the wearable device to detect the wake word

in parallel with the VA device, which triggers the data collection on

both devices separately. When the wearable and the VA device are

coarsely synchronized, the voice command right after the detected

wake word is recorded by both devices for user authentication using

cross-domain comparison.

Next, WearID exploits the Vibration Domain Feature Derivation
and Audio Domain Feature Derivation to derive time-frequency fea-

tures from the voice command captured in the vibration domain

and the audio domain, respectively. The Vibration Domain Feature

(a) VA’s microphone (b) Accelerometer on Huawei watch 2 sport

Figure 4: Frequency responses of a microphone and ac-
celerometer (Z axis) to a chirp signal (500𝐻𝑧 ∼ 1000𝐻𝑧).

Derivation first removes the noises caused by human motions in

the accelerometer readings by using a high-pass filter and then

segments the vibration signals of the voice command by examin-

ing its moving variance. Next, the time-frequency representations

(i.e., spectrogram) of the voice segment are extracted and used as

the vibration domain features. Similarly, the Audio Domain Feature
Derivation denoises the microphone data and computes the spec-

trogram of the audio segment. Due to the huge sampling rate gap

between microphone and accelerometer (e.g., 8000Hz vs. 200Hz),

directly comparing the spectrograms in the two sensing domains is

nearly infeasible. Therefore, we propose the Feature Extraction and
Domain Conversion, which extracts and converts the spectrogram

in the audio domain to the low-frequency aliased representations,

which are comparable to the spectrogram in the vibration domain.

Finally, WearID performs Cross-Domain User Authentication via

examining the similarity between the spectrogram of the wearable

and the converted spectrogram of the microphone. The proposed

system exploits Spectrogram Calibration based on 2D-normalization
to further calibrate the spectrogram of the two sensors by normal-

izing their time lengths and magnitudes, which addresses the scale

mismatches. Due to the time difference of triggering themicrophone

and the accelerometer, there exists an unpredictable relative time

offset between the two spectrograms. To addresses this, we propose

Cross-domain Comparison based on 2D-Serial Correlation, which
quantifies the cross-domain similarity by finding the maximum

2D-correlation coefficient between the spectrograms by sliding one

spectrogram across the other. The authentication succeeds if the

maximum 2D-correlation coefficient is over a predefined threshold.

Otherwise, it fails and rejects the voice command.

5 CAPTURING VOICE COMMANDS
THROUGH VIBRATION

5.1 Relationships and Differences between
Microphone and Accelerometer

Both microphone and accelerometer are Micro Electro Mechanical

System (MEMS) sensors. MEMS microphones exploit a pressure-

sensitive diaphragm to capture sound waves as analog signals [47],

which are amplified and fed to a Low Pass Filter (LPF) with a cutoff

frequency of half of the sampling frequency. An Analog-to-Digital

Converter (ADC) is then applied to digitize the analog signals. Dif-

ferently, MEMS accelerometers in wearable devices measure sound
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(a) Amplitude of microphone (b) Amplitude of wearable accelerometer

Figure 5: Responses of the microphone and the accelerome-
ter (Z axis) to a chirp from 0𝐻𝑧 to 22𝑘𝐻𝑧.

in terms of the vibration of the inertial mass, which is originally de-

signed to capture the device’s acceleration caused by humanmotion.

The hardware comparison between amicrophone and an accelerom-

eter is shown in Figure 3. The accelerometer does not contain an

LPF, and thus, it can capture vibration signals approaching its sens-

ing limit, e.g., up to 4𝐾𝐻𝑧 for Invensense M6515 on LG Urbane

watch 150. Such sensing capability is sufficient for capturing human

voices, which typically ranges from 85𝐻𝑧 ∼ 255𝐻𝑧. However, the
missing LPF in accelerometer design results in distinctive frequency

sensitivity to human voices compared with the microphone. Fur-

thermore, vendors of wearable devices usually limit the sampling

rate to below 200𝐻𝑧 (e.g., 100𝐻𝑧 on Huawei watch 2 sport) to re-

duce power consumption, which causes significant signal aliasing

and make it even harder for cross-domain comparison.

5.2 Acoustic Response in Vibration Domain
Aliased Signal. The low sampling rate of wearable’s accelerometer

causing the captured speech vibrations aliased, where multiple fre-

quencies of the vibration signals mapped to a signal frequency [32].

Figure 4 compares the spectrograms of a microphone and an ac-

celerometer under a chirp sound from 0.5𝑘𝐻𝑧 ∼ 1𝑘𝐻𝑧, where the
accelerometer’s spectrogram shows a “Zigzag” curve. This validates

that a frequency in the vibration domain could correspond to mul-

tiple frequencies in the audio domain (i.e., aliased). Such aliasing

effects render a direct comparison between the speech signals in

the vibration domain and those in the audio domain almost im-

possible. Note that the aliasing effects are usually removed on the

microphone with the LPF, which is missing in the accelerometer’s

hardware design. We model the frequency relationship between

the vibration signal and the audio signal as:

𝑓𝑎𝑙𝑖𝑎𝑠 = |𝑓 − 𝑁 𝑓𝑠 |, 𝑁 ∈ 𝑍, (1)

where 𝑓𝑎𝑙𝑖𝑎𝑠 , 𝑓 and 𝑓𝑠 denotes the aliasing vibration signal fre-

quency, audio signal frequency, and sampling rate of the accelerom-

eter. We discuss how to perform the cross-domain comparison with

accelerometer and microphone data in Section 6.3.

Unique Response to the Aerial Speech Vibrations. Due to
the heterogeneous sensing mechanisms and hardware design (e.g.,

LPF), accelerometer and microphone show distinctive acoustic re-

sponse to human speeches. To study unique acoustic response in

the vibration domain, we conduct an experiment by playing a chirp

using a loudspeaker and studying the response of the wearable’s

accelerometer. Specifically, we play an audio that sweeps from
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Figure 6: Response of ac-
celerometer (Z axis) under
different sound pressure
levels.
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Figure 7: Response of
accelerometer (Z axis)
under different subject-to-
wearable distances.

0𝐻𝑧 ∼ 22𝑘𝐻𝑧 by using a Logitech loudspeaker and use an wear-

able’s accelerometer (i.e., on LG Urbane W150) and a smartphone

microphone (on Nexus 6) to record the sound, where the distance

between the loudspeaker and the recording devices is 10𝑐𝑚. As

shown in Figure 5, we find that the accelerometer has response for

the sound between 400𝐻𝑧 and 3400𝐻𝑧, whereas the microphone

captures sound between 80𝐻𝑧 and 15𝑘𝐻𝑧. Compared to the mi-

crophone, the accelerometer is only sensitive to sound reside in

a lower frequency band. Furthermore, we find that even for the

same frequency, the accelerometer has unique responses in terms

of amplitude compared to that on the microphone. Such frequency

selectivity makes the audible and inaudible attacks fail to repro-

duce a user’s acoustic characteristics on the accelerometer readings,

though they may succeed in synthesizing the user’s voice on micro-

phone recordings. The distinct acoustic characteristics in vibration

domain thus add a layer of protection against the acoustic attacks,

even the state-of-the-art audio adversarial attacks [13, 35, 49].

Recording Live Human Speech Using Wearables. We con-

duct an experiment to further study the sensitivity of the wearable’s

accelerometer on live human speeches. Particularly, we use a smart-

watch (Huawei watch 2 sport) to record a voice command (i.e.,

"calendar") spoken by a human subject with the sound pressure lev-

els (SPL) of 60𝑑𝐵, 70𝑑𝐵, 80𝑑𝐵, 90𝑑𝐵, and 100𝑑𝐵, under an ambient

noise level of 37𝑑𝐵. The distance between the subject’s mouth and

the smartwatch is 10𝑐𝑚, with the smartwatch worn on his left hand.

Figure 6 shows the response of the Z-axis of the accelerometer. We

can observe that the wearable can capture speech vibrations with

SPL over 70𝑑𝐵 and the amplitude grows with the SPL. Particularly,

when the SPL of speech vibration reaches 80𝑑𝐵 (presentation-level

volume), the accelerometer can clearly reveal the speech vibrations,

with a signal-to-noise ratio of over 9.71. This means that an SPL of

80𝑑𝐵 could inject sufficient voice characteristics into the vibration

readings for cross-domain comparison. We confirm this with ex-

tensive experiments shown in Section 7. We also test the capability

of the wearable’s accelerometer on picking up voice under various

subject-to-wearable distances from 5𝑐𝑚 to 35𝑐𝑚 (with a 5𝑐𝑚 gap).

The subject speaks the same voice command (i.e., "calendar") to

the smartwatch using an average SPL of 80𝑑𝐵. We can observe in

Figure 7 that when the distance increases to 30𝑐𝑚, the response can

be barely observed (with a low SNR of 2.0). Such short response

distance of the accelerometer can facilitate WearID to shield against

many acoustic attacks.
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Figure 8: Synchronization of the microphone data (8000Hz)
and accelerometer data (200Hz) at Z axis, and the calibrated
accelerometer data (i.e., with hand vibration noise removal).

6 CROSS-DOMAIN USER AUTHENTICATION
6.1 Coarse-grained Synchronization
To examine the cross-domain similarity for user authentication,

WearID needs to simultaneously capture a same voice command

from a subject using the wearable’s accelerometer and the VA de-

vice’s microphone. This requires the system to trigger the data col-

lection on both devices with a low relative time delay so as to record

the same speech. We develop two alternative synchronization ap-

proaches: WiFi Communication-based Method and Parallel Wake-
word Detection Method. WearID uses the WiFi Communication-

based Method if the wearable is equipped with a WiFi module.

The VA device detecting a wake word sends a triggering message

through WiFi to notify the wearable device for collecting vibration

signals. If a WiFi module is not equipped (e.g., activity tracker), the

wearable device can receive the triggering message via the Blue-

tooth link with a paired smartphone that connects to the VA device.

Figure 8(a) and (b) show the results of the WiFi communication-

based synchronization between a VA device (i.e., Nexus 6) and

a wearable (i.e., Huawei 2 sport) given a voice command "Alexa,

What’s on my calendar for tomorrow". We can find that the data of

the microphone and the accelerometer are roughly synchronized.

As an alternative approach, the Parallel Wake-word Detection

Method is used when the WiFi network delay is high and not

suitable for synchronization. In such situations, the wearable device

needs to recognize the wake word using its accelerator in parallel

with the VA device and triggers the data collection. In particular,

we build a machine learning model (e.g., SVM, random forest) based

on the speech characteristics in the vibration domain for detecting

wake words. Given that wearable’s accelerometers usually run in

the background for monitoring user’s activities around-the-clock,

this method would not introduce additional energy consumption

on the wearable. Our study shows that using a random forest model

can sufficiently recognize 10 wake words with 83% accuracy by

using accelerometers in a Huawei 2 sport smartwatch.

6.2 Data Denoising and Segmentation
The accelerometer readings collected with wearables contain sub-

stantial noises caused by humanmotions (e.g., walking, hand tremor).

These motions are unpredictable and can significantly distort the

speech vibration patterns in accelerometer readings. Previouswork [27,

43] found that human motion-related accelerations usually have fre-

quencies lower than 20𝐻𝑧. Therefore, we adopt a high-pass Butter-
worth filter with a cut-off frequency of 20𝐻𝑧 to remove the impacts

of human motions and reveal speech vibrations for cross-domain

comparison. Figure 8(c) illustrates the accelerometer readings af-

ter our denoising. Compared with the raw accelerometer readings

shown in Figure 8(b), the denoised accelerometer readings present

more obvious patterns that are similar to the acoustic signal shown

in Figure 8(a).

Next, we calculate the moving variance of the signals in the

audio domain and determine the segment associated with human

speeches based on an empirical threshold of 0.1, which sufficiently

differentiates ambient noises and human speeches. Segmentation

on accelerometer readings is particularly challenging due to its

low sensitivity to aerial voice. Therefore, we use the segmentation

results of the microphone recordings to assist the segmentation

of the accelerometer readings. Since both data has been coarsely

synchronized, we search for the starting point of voice segment on

the accelerometer reading within a time window𝑊𝑇 = 0.5 after

the onset of the microphone segment. The window is determined

by an empirical study on the relative time offset between the onsets

of microphone and accelerometer segments. We then determine the

ending point of the segment in the accelerometer readings based

on the length of the microphone segment.

6.3 Feature Extraction in Vibration and Audio
Domains

Time-frequency Feature Extraction. In order to derive mean-

ingful features for cross-domain comparison, we resort to time-

frequency analysis which has shown great successes in both speech

and speaker recognition tasks. Our preliminary study validates that

solely relying on time-series correlation between the accelerometer

and the microphone readings fails to effectively compare cross-

domain similarity. We demonstrate the results of time-series com-

parison in Appendix A.1. To extract time-frequency features, we

explore spectrograms that represent vibration/audio signals’ en-

ergy distribution over a range of frequencies in short time frames.

The spectrogram is derived by computing the Discrete Time Short

Time Fourier Transform (DT-STFT) representations of the acoustic

signals in vibration/audio domain with a sliding window, which is

defined as following:

𝐷𝑇𝑆𝑇𝐹𝑇 (𝑡, 𝑓 ) =
𝑡+𝑁−1∑
𝑛=𝑡

𝑥 (𝑛)𝑤 (𝑛 − 𝑡)𝑒−𝑗 𝑓 𝑛, (2)

where 𝑡 and 𝑓 are the time index and frequency index of the two-

dimension spectrogram. 𝑥 (𝑛) is a sample of the acoustic signal in

the sliding window, and 𝑁 is the size of the sliding window/FFT.

We empirically determine 𝑁 to be 2048 and 64 for microphone and

accelerometer data, respectively.𝑤 (𝑛) is a Hamming window with

length 𝑁 . We then compute the magnitude squared of DT-STFT rep-

resentations in at 𝑡 : 𝑃𝑡 = [|𝐷𝑇𝑆𝑇𝐹𝑇 (𝑡, 1) |2, ..., |𝐷𝑇𝑆𝑇𝐹𝑇 (𝑡, 𝐹 ) |2],



ACSAC 2020, December 7–11, 2020, Austin, USA Cong Shi, Yan Wang, Yingying Chen, Nitesh Saxena, and Chen Wang

(a) Spectrogram of accelerometer (b) Aliasing spectrogram of microphone

Figure 9: Comparison of the accelerometer spectrogram (Z
axis) with the converted microphone spectrogram ("Alexa").

Algorithm1 Spectrogram-based Frequency Conversion Algorithm

function Conversion(𝑆𝑚𝑖𝑐 )

2: Input: 𝑆𝑚𝑖𝑐 -original microphone spectrogram

𝜔-sampling rate of accelerometer

4: Output: ^𝑆𝑚𝑖𝑐 -converted microphone spectrogram

| ^𝑆𝑚𝑖𝑐 = 𝑧𝑒𝑟𝑜𝑠 (𝑇, 𝐹 ) |, 𝜔𝑤𝑠 = 2𝜋 ×𝜔

6: for 𝑡 = 1 : 𝑇 do
for 𝑓𝑚𝑖𝑐 = 700 : 3300 do

8: // Frequency selection

for 𝑁𝑠ℎ𝑖 𝑓 𝑡 = −10 : 10 do
10: 𝑓𝑤 = |𝑓𝑚𝑖𝑐 − 𝑁𝑠ℎ𝑖 𝑓 𝑡 ×𝜔 |

if |𝑆𝑚𝑖𝑐 (𝑡𝑛, 𝑓𝑚) | > 70𝑑𝐵 & 𝑓𝑤 ≤ 𝑓𝑠 & 𝑓𝑤 > 0 then
12: // Amplitude selection

^𝑆𝑚𝑖𝑐 (𝑡𝑛, 𝑓𝑤 ) = ^𝑆𝑚𝑖𝑐 (𝑡𝑛, 𝑓𝑤 ) + |𝑆𝑚𝑖𝑐 (𝑡𝑛, 𝑓𝑚) |
14: // Spectrogram-based frequency conversion

end if
16: end for

end for
18: end for

end function

where 𝐹 = 𝑁 /2 following Nyquist theorem. Next, we slide the

window by a step of 𝑝 samples and repeat the same steps to derive

the DT-STFT representation for each window. The time-frequency

features 𝑆 (i.e., spectrogram) are then obtained by combining the

DT-STFT representations ordered in time: 𝑆 = [𝑃0, .., 𝑃𝑇 ].
Feature Domain Conversion. To mitigate the impacts of huge

sampling rate gap between the microphone and the accelerome-

ter, we develop a feature domain conversion method to transform

the spectrograms in high-frequency audio domain to those in low-

frequency vibration domain. The conversion method takes com-

ponents in the audio domain spectrogram 𝑆𝑚𝑖𝑐 (𝑡, 𝑓𝑚) as input and
calculates its new position (𝑡, 𝑓𝑤) in the vibration domain. The

original microphone frequency component 𝑓𝑚 is then mapped to

the low-frequency component 𝑓𝑤 based on Equation 1, with the

time index unchanged. If multiple spectrogram components are

overlapped at the same point, we accumulate their energy in the

new converted spectrogram. The conversion function is defined as:

𝑆𝑚𝑖𝑐 (𝑡, 𝑓𝑤) =
inf∑

𝑛=− inf

𝑆𝑚𝑖𝑐 (𝑡,𝑤𝑖𝑛( |𝑓𝑚 + 𝑛 × 𝜔 |)), (3)

where 𝜔 is the sampling rate of the accelerometer. Such conver-

sion maps each frequency component in the audio domain to an

appropriate frequency in the vibration domain, which makes the

cross-domain comparison possible.

Sensitive Feature Selection. In order to achieve reliable cross-

domain comparison, we study the frequency selectivity differences
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Figure 10: The spectrogram correlation based on our
method.

of microphone and accelerometer and select the most sensitive

time-frequency features across the two sensors. Compared to mi-

crophone, wearable has different sensitivities to human speeches

across different frequency bands. We explore this phenomenon by

recording a chip signal of 0𝐻𝑧 ∼ 4𝑘𝐻𝑧 with a wearable (Huawei

2 sport) and a VA device (Nexus 6) and compare the similarity be-

tween the spectrograms of the accelerometer and the microphone

readings. Note that we have applied the feature domain conversion

method on the microphone’s spectrogram. We find that the spec-

trograms of the accelerometer and the microphone only show high

similarity within 700𝐻𝑧 ∼ 3300Hz, where the harmonics of human

speeches reside. We illustrate the comparison results in Appendix

Figure 3. To cope with the frequency selectivity differences, we

only use the spectrogram of microphone from 700𝐻𝑧 to 3300𝐻𝑧
for generating the low-frequency aliasing spectrogram. Further-

more, since the wearable’s accelerometer can only be triggered with

sound waves over 70𝑑𝐵 as shown in Section 5.2 (also confirmed in

Accelword [52]), we exclude the frequency components of the mi-

crophone spectrogram with energy below 70𝑑𝐵 for feature domain

conversion. The algorithm integrating feature domain conversion

and sensitive feature selection methods is presented in Algorithm 1.

Figure 9(b) shows an aliasing spectrogram of a voice command

"Alexa" derived from the microphone readings. We can observe

that the aliasing spectrogram has an "equivalent" form with the

spectrogram of accelerometer shown in Figure 9 (a).

6.4 User Authentication Using Cross-domain
Similarity

SpectrogramCalibration based on 2D-normalization.The scales
of measurements are greatly different on the accelerometer and

the microphone. To resolve such scale differences, we develop a

2D-normalization scheme to normalize the energy values of the

spectrograms across different frequencies. The normalization oper-

ation is defined as:

𝑆𝑛𝑜𝑟𝑚 (𝑡, 𝑓 ) = 𝑆 (𝑡, 𝑓 ) − 𝑆𝑚𝑖𝑛 (𝑡)
𝑆𝑚𝑎𝑥 (𝑡) − 𝑆𝑚𝑖𝑛 (𝑡)

, (4)

where 𝑆 (𝑡, 𝑓 ) is a spectrogram component at time 𝑡 and frequency

𝑓 . This normalization process is applied to spectrograms in both

vibration and audio domains.

Cross-domainComparison based on 2D-Serial Correlation.
WearID authenticates users through comparing the 2D correlation

between the spectrogram of the accelerometer and aliasing spectro-

gram of the microphone. We refer to the 2D correlation coefficient
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Table 2: The specifications of the accelerometers in the tested wearable devices.

Model Accelerometer Programmable Measurement Range Sensor sampling frequency System sampling rate

LG W150 Invensense M6515 ±2𝑔,±4𝑔,±8𝑔,±16𝑔 4-4000Hz 200Hz

Huawei watch 2 sport STMicroelectronics LSM6DS3 ±2𝑔,±4𝑔,±8𝑔,±16𝑔 4-1600Hz 100Hz

as cross-domain similarity which is defined as:

𝐶𝑜𝑟𝑟 (𝑆𝑚𝑖𝑐 , 𝑆𝑎𝑐𝑐 ) =
𝐴 ×𝑉

√
𝐴2 ×𝑉 2

,

𝑠 .𝑡 ., 𝐴 =
∑
𝑡

∑
𝑓

(𝑆𝑚𝑖𝑐 (𝑡, 𝑓 ) − 𝑆𝑚𝑖𝑐 ),

𝑉 =
∑
𝑡

∑
𝑓

𝑆𝑎𝑐𝑐 (𝑡, 𝑓 ) − 𝑆𝑎𝑐𝑐 ,

(5)

where 𝑆 represents the mean of a spectrogram, either in the audio

domain or in the vibration domain. 𝑆𝑎𝑐𝑐 represents the spectrogram

of accelerometer. In practice, directly computing frame-wise cor-

relation does not yield good similarity comparison performance

due to the unpredictable offsets caused by coarsely synchronized

data collection processes on the wearable and the VA device. Thus,

we propose a 2D-serial correlation algorithm that searches for an

optimal offset associating with the maximum correlation between

the spectrograms in the vibration and the audio domains. Partic-

ularly, we fix the aliasing spectrogram in the audio domain and

shift the spectrogram in the vibration domain frame by frame to

calculate the correlation coefficient. The maximum 2D-correlation

coefficient can then be found and used as the correlation score.

Finally, a threshold-based method is applied to the correlation score

and authenticate the user if the score is over an empirical threshold.

Figure 10(a) shows the pairwise correlation scores of 20 spoken

words provided in Table B. Most of the diagonal comparisons (i.e.,

same words) show the highest correlation scores. Figure 10(b) fur-

ther confirms the effectiveness of our method on differentiating 20

representative voice commands shown in Table C, which shows bet-

ter performance. This is reasonable since sentences contain much

more speech information than single words.

7 PERFORMANCE EVALUATION
7.1 Experimental Methodology
Devices. To evaluate WearID, two smartwatch models, Huawei

2 sport (100𝐻𝑧) and LG W150 (200𝐻𝑧) are involved to collect

accelerometer readings. The accelerometer specifications of the

two smartwatches are listed in Table 2. Specifically, LG W150 is

equipped with Invensense M6515 which supports sampling fre-

quencies within 4𝐻𝑧 ∼ 4000𝐻𝑧. The maximum acceleration that

can be measured with this accelerometer is ±16𝑔.Huawei watch
2 sport has the same programmable measurement range as the

LG smartwatch, but it supports lower sampling frequencies, up

to 1600𝐻𝑧. Although the accelerometers can record vibrations of

1.6𝐾𝐻𝑧 ∼ 4𝐾𝐻𝑧, the vendors constrain the sampling rates to en-

sure low power consumption. Both smartwatches run Android

Wear OS 2.0. In addition, as mentioned in Section 6.2, we use a

high-pass filter of 20𝐻𝑧 to remove the impacts of body movements

(e.g., typing on a keyboard, walking) on accelerometer readings.

We use an Android smartphone (Motorola Nexus 6) to emulate the

VA device recording voice commands at a sampling rate of 8𝑘𝐻𝑧.
Experimental Setup. We evaluate the performance of WearID

in a typical office environment. Compared with the home environ-

ment, the office environment has more dynamic ambient noises

(e.g., air condition, people walking, and conversations). Each partic-

ipant wears a smartwatch when he/she speaks voice commands to

a Motorola Nexus 6 smartphone at 1𝑚 distance. The average SPL

of the spoken speech commands is 80𝑑𝐵 (i.e., typical presentation-

level volume), which is reasonable as most users subconsciously

increase their volume when issuing voice assistant commands, usu-

ally from a distance. Because people may wear watches differently

(e.g., upside-down, loose around the wrist), we evaluate the im-

pacts of different wearing positions on our system. Particularly,

we test horizontal and vertical positions, which have the smallest

and the largest impact angles between acoustic waves and smart-

watches’ screens, respectively. We use a Logitech S120 speaker [31]

to conduct replay attacks and hidden voice commands, with the

volume set to maximum. To imitate ultrasound attacks, we use a

function generator (i.e., Keysight Technologies 33509B [41]) and a

tweeter speaker [18] to generate ultrasound. The distance between

the loudspeaker/tweeter speaker and the smartwatch is 30𝑐𝑚.

Data Collection. We involve 10 participants to test WearID

under the normal situation (i.e., no attack present) and various

attacks over a six-month period. The participants are asked to speak

20 representative critical voice commands as listed in Appendix

Table C. From each participant, 40 voice command samples with the

smartwatch worn in horizontal and vertical positions are collected.

In addition, we record 40 samples of ambient noises by using the

smartwatch’s accelerometer to examineWearID under the situation

where the legitimate user is not issuing critical commands. Besides,

100 samples of 10 hidden voice commands are utilized to evaluate

WearID against hidden voice command attacks [2].

Evaluation Metrics. To evaluate WearID, we use the following

four metrics: true positive rate (TPR) is the percentage of critical
commands of the legitimate user being correctly authenticated;

false positive rate (FPR) is the percentage of the adversaries’ critical
voice commands that pass WearID; receiver operating characteristics
(ROC) curve is generated by plotting the TPR against the FPR under

thresholds from 0 to 1with a step of 0.01;Area under the ROC Curve
(AUC) measures how well the WearID correctly authenticating the

legitimate users while rejecting the adversaries.

7.2 Authenticating Legitimate Users
We first evaluate WearID in normal situations, where the attacker

does not present. While there is no malicious attack, WearID can

still be mistakenly triggered by friendly users’ (e.g., family members,

colleagues) conversation that is similar to the critical commands,

but the wearable device of the legitimate user only records ambient



ACSAC 2020, December 7–11, 2020, Austin, USA Cong Shi, Yan Wang, Yingying Chen, Nitesh Saxena, and Chen Wang

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

Normal Situation

Random Attack

Replay Attack

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

Normal Situation

Random Attack

Replay Attack

(a) Horizontal (b) Vertical

Figure 11: Average ROC curve of verifying the user using
Huawei watch 2 under normal situation, random attack and
impersonate/replay attacks.

noises. For evaluation, we use the participants’ critical commands

recorded by the VA device against the corresponding wearables’

vibration data to simulate the legitimate user using the VA device.

Furthermore, we use the participants’ critical commands recorded

by the VA device against the wearables’ ambient vibration data

to simulate the cases that WearID is triggered mistakenly. We use

these data to derive ROC curves and study the performance of

WearID. The red curves in Figure 11 and Figure 12 present the ROC

of authenticating the legitimate users when the users are wearing

Huawei Watch 2 and LG W150 with two typical poses, respectively.

We can observe that WearID achieves 99.8% TPR and 0% FPR on

authenticating the legitimate users on Huawei Watch 2. Similarly,

WearID can achieve 99.6% TPR and 0% FPR on LG W150. The 0%
FPRs indicate that the voice commands from friendly users will

not pass WearID, meaning that our system can be used in typical

environments with multiple people. The AUCs of these cases are

all around 100% no matter the smartwatch is worn horizontally or

vertically, indicating that WearID can authenticate legitimate users’

critical voice commands accurately and robustly with different

wearables devices and their poses.

7.3 Attack on User’s Absence
Against Random Attack. Under the random attack, an adversary

tries to use his/her own voice to bypass the VA system. Although

the user is not co-located with the VA device, when the WearID is

triggered by the adversary, the user’s smartwatch may still record

the user’s speeches (e.g., conversation). To evaluate WearID under

such random attacks, we take turns considering each participant as

the legitimate user and the remaining 9 participants as adversaries.

We use the adversaries’ critical command speeches recorded by the

VA device against the vibration data of the legitimate user’s voice

commands for evaluating random attacks. In addition, we use the

legitimate user’s audio critical commands against his/her vibration

data to simulate the legitimate use of the VA device. Figure 11 and

Figure 12 show the average ROC curves of authenticating the legit-

imate user with two smartwatches under horizontal and vertical

poses. We observe that WearID can authenticate the legitimate user

and reject random attacks with high accuracy for both poses. In

particular, the AUCs for Huawei watch 2 and LG Urbane W150 are

94.5% and 88.9% under the two poses. The vertical position shows

slightly higher AUCs as it has the largest impact angles between

acoustic waves and smartwatches’ screens. Given an FPR of 5%,
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Figure 12: Average ROC curve of verifying the user using
LG UrbanW150 under normal situation, random attack and
impersonate/replay attacks.

WearID can achieve high TPRs of 95.2% and 98.5% for Huawei

watch 2 held in both positions. The results indicate that WearID is

effective in defending against random attacks.

Against Impersonation andReplay/SynthesisAttack.Next,
we evaluate WearID under more sophisticated impersonation and

replay/synthesis attacks which reproduce a user’s voice character-

istics on the VA device. In this case, the wearable is attached to

the absent user and out of the adversary’s control, and it seldom

happens when the two separated devices (i.e., VA device and the

smartwatch) receive the exact same speech. However, the smart-

watch may still record the user’s speeches but with other content.

For evaluation, we alternatively set each participant as the legiti-

mate user. We use each legitimate user’s critical voice command

recorded by two smartwatches against other 19 audio recordings.

To simulate legitimate use of critical voice commands, we use the

legitimate user’s vibration data of each command against the corre-

sponding audio data. Figure 11 and Figure 12 show the ROC curves

(i.e., black curves) when authenticating the user under imperson-

ation/replay attacks. We find that WearID successfully reject the

adversaries by using both Huawei watch 2 and LG Urbane W150

under both horizontal and vertical poses. In particular, WearID

achieves 89.1% and 86.8% for Huawei Watch 2 and LG Urbane

W150 under horizontal position. The AUCs are 91.23% and 88.34%
under vertical pose. For a FPR of 10%, WearID can obtain the TPRs

of 91.2% and 93.3% when Huawei watch 2 is held in horizontal

and vertical directions. We find the performance of WearID under

impersonation/replay attacks are slightly lower than that under

random attacks. This is because the adversary has obtained the

user’s voice samples to improve the attack. While in the practi-

cal scenarios, a legitimate user’s wearable device does not usually

record the user’s speeches, which make the performance of WearID

approaching to that under the normal situation.

7.4 User Authentication under Co-location
Attack

Against Hidden Voice Command. To evaluated WearID under

hidden voice command attacks, we compare the vibration data and

the audio data for each of the 100 recorded hidden commands. In

addition, we alternatively set each of the 10 participants as the

legitimate user and compare the vibration and the audio data of

each critical voice command. Figure 14 depicts the CDFs of the

cross-domain similarities of the hidden commands recorded by
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Figure 13: The frequency responses of the VA system and the wearables (i.e., microphone, Huawei watch 2, LG Urban W150
from left to right) under ultrasound attacks.
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Figure 14: CDF of the cross-domain 2D correlations to distin-
guish the hidden voice commands and the legitimate user’s
voice commands.

the VA device and the legitimate user’s critical voice command

captured by the smartwatches’ accelerometers. We observe that

the similarities between the two sensor readings are low for the

hidden voice commands, which can be differentiated well from the

legitimate user’s critical commands. In particular, the median of the

cross-domain similarities for the hidden voice commands is around

0 for Huawei watch 2 and 0.05 for LG Urban W150. In comparison,

the median similarities for the legitimate user’s voice commands

are around 0.5 for Huawei watch 2 and 0.4 for LG UrbanW150. This

is because the accelerometers on the wearables have short response

distances (i.e., less than 25𝑐𝑚) and unique frequency selectivity

patterns to sound. Thus, with our cross-domain user authentication

approach, the hidden voice attacks can be defended.

Against Ultrasound Attack. Under the ultrasound attack, an

adversary modulates the recorded user voice command to an in-

audible frequency and replays it using an ultrasound speaker. In

this scenario, both the VA’s microphone and the user’s smartwatch

are exposed to this inaudible sound. We evaluate WearID by com-

paring the accelerometer’s and the smartwatches’ responses under

a nearly inaudible chirp signal. In particular, we use a function gen-

erator (i.e., Keysight Technologies 33509B [41]) to generate a chirp

of 15𝑘𝐻𝑧 ∼ 25𝑘𝐻𝑧 and play the chirp using a tweeter speaker,

which is placed 30𝑐𝑚 away from the smartwatch. Figure 13 shows

the frequency responses of the microphone and the two accelerom-

eters. We can find that though the microphone show responses

from 15𝑘𝐻𝑧 ∼ 24𝑘𝐻𝑧, we do not observe any responses on the

two smartwatches. The experimental results show that the smart-

watch’s accelerometer could shield the VA system from ultrasound

attacks.
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Figure 15: Normalized 2D cross-correlation between spectro-
gram of different recording devices .

7.5 Scalability to Different VA Devices
To demonstrate the scalability of WearID to various VA devices

(e.g., phones, laptops), we compare the voice signals recorded by

Nexus 6 smartphone used to test WearID with the sound recorded

with two other devices, a iPhone 7 and a MSI GL62 laptop. Since

microphones in different VA devices share similar hardware compo-

nents (e.g., membrane, black-plate) and audio processing pipelines,

a voice command recorded by different VA devices should exhibit

high similarity. In the experiment, we place the smartphones and

the laptop 1m away from a subject and set the sampling rates to

8𝑘𝐻𝑧. Then we use the three devices to simultaneously record 5

trials of each of the three spoken voice commands: S1-“What’s

on my calendar for tomorrow?”; S2-“What is my password?”; S3-

“Delete all my reminders”. To quantify the similarity between voice

commands, we derive a spectrogram of each recorded voice signal

and then calculate the normalized 2-D cross-correlation between

voice commands recorded with each pair of devices. As shown in

Figure 15 (a) and Figure 15 (b), high correlation scores between

the same recordings on the two pairs of different devices can be

observed. These results validate that WearID can be easily extended

to various VA devices with different audio recording capabilities.

8 DISCUSSION
Deployment Feasibility.WearID requires a minimum sampling

rate of 100Hz for the accelerometer to capture aerial speech vibra-

tions. This sampling rate is commonly available in the mainstream

wearable devices, such as Samsung Gear Series and Fitbit. A user

could pair/enroll a wearable device to an account of a VA system

(e.g., Google or Alexa account), allowing the user to use critical
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commands on any VA devices linked to his account. For wearable

devices without WiFi/cellular modules (e.g., some activity trackers),

WearID will still work by using Bluetooth to bridge the wearable

devices to the VA’s clouds using the paired smartphones. A user

can use WearID in typical room environments without requiring

the wearable and the VA device (e.g., Google Home, Amazon Echo)

being close to each other. The user’s voice could easily reach the

wearable worn by the user and the VA device within an effective

range of approximately 7 meters. WearID is especially useful in the

scenarios where multiple users share the VA devices (e.g., business

office and home). With the cross-domain authentication, WearID

could detect unauthorized critical commands and alert the corre-

sponding user.

Energy Consumption and Delay. WearID offloads the com-

putationally expensive tasks (i.e., Cross-domain Voice Comparison)

to the cloud, avoiding the heavy computation/energy consumption

on the wearable device. Therefore, the most power-consuming task

on the wearable device is data acquisition, which uses the built-in

accelerometer to capture users’ voice commands. We find that voice

commands usually last less than 10 seconds, and the corresponding

power consumption of recording the voice commands by using the

built-in accelerometer on a wearable device is lower than 0.21𝐽 .
We also notice that since traditional VA systems still need to send

recorded voice data to the cloud for data processing, the wearable

device could send its data to the cloud at the same time. Thus, the

delay of WearID is close to the response time of traditional VA

systems (e.g., 1.93 seconds on average for Alexa [7]).

Replay Attack in Vibration Domain. Considering WearID

exploits vibration signals for cross-domain authentication, an ad-

versary may attack WearID via replaying well-designed audio that

generates vibration signals replicating the replayed audio. Partic-

ularly, to design such an audio signal, the adversary can study

time-frequency response of the same model of wearable device

used by the legitimate user. However, due to the unique manu-

facture imperfections, each wearable device exhibits distinctive

frequency-selective patterns, even for the same type of device, mak-

ing it difficult to replicate the vibration signals. Additionally, the

adversary needs to get very close to the wearable device (i.e., less

than 30cm) to generate the vibration signals, which will be noticed

by the user. We leave the study on exploring the frequency-selective

pattern to defend against replay attacks in the vibration domain to

our future work.

9 CONCLUSION
In this paper, we presented WearID, a wearable-assisted low-effort

user authentication system that assists existing Voice Assistant

(VA) systems with enhanced security, especially the critical voice

commands (e.g., big purchases, critical calls). WearID authenticates

the user via examining the cross-domain similarity between the

unique voice characteristics captured by the accelerometers of the

wearable device and the microphone of the VA system, respectively.

The cross-domain comparison enables WearID to achieve training-

free and privacy-preserving voice authentication. We developed

the spectrogram-based conversion and frequency/amplitude selec-

tion algorithms, which model the unique and complex relationships

between the voice commands across two domains under a huge sam-

pling rate gap. By utilizing the cross-domain similarity along with

the motion sensor’s short response distance to voice, WearID can

shield the VA system from various acoustic attacks (e.g., imperson-

ation, replay, hidden command, and ultrasound attacks). Extensive

experiments with two commodity smartwatches and 1000 voice

commands showed that WearID can authenticate users’ voice com-

mands with 99.8% accuracy in the normal situation and detect 97.2%

fake voice commands under audible/inaudible attacks.
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A APPENDIX

(a) Spectrogram of microphone (b) Spectrogram of wearable accelerome-

ter

Figure 1: Spectrogram of the single frequency signal (850Hz)
on microphone and wearable device (i.e., Huawei watch 2
sport).
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Figure 2: The time-domain correlation between the micro-
phone data and motion sensor, which are resampled to the
same sampling rate level (Illustrated with 10 words on Ama-
zon Echo and Huawei watch 2).

A.1 Difficulty of Comparing Microphone Data
with Motion Sensor Data

Figure 2 illustrates the difficulty of comparing the microphone

data with the motion sensor data, where a participant speaks ten

https://www.logitech.com/en-us/product/s120-stereo-speakers
https://www.logitech.com/en-us/product/s120-stereo-speakers
https://www.alliedelec.com/keysight-technologies-33509b
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Figure 3: Directly converting the microphone data of a fre-
quency chirp (0 ∼ 4𝐾𝐻𝑧) into the low frequency data.

words to both a microphone and a accelerometer, and both data

are re-sampled to the same sampling rate for similarity compari-

son. Particularly, Figure 2 (a) shows the time-domain correlation

coefficient between the microphone recorded sound (i.e., X axis)

and motion sensor data (i.e., Y axis) by cross-comparing ten words.

We observe that the correlations at the diagonal (i.e., same word

sound) and non-diagonal (i.e., different word sounds) are indistin-

guishable. The results indicate that the re-sampling technique and

the time-domain analysis are insufficient to address the similarity

comparison of the two different sensing modalities. Figure 2(b),

CDF of the correlation coefficients, further depicts the challenge of

matching the sound across the two domains, where the sound of

the same word and those of different words all show low correlation

values (i.e., less than 0.1). Thus, we need to investigate the inherent
unique relationship between the two sensing modalities to facilitate

their similarity comparison.

A.2 Examples of the Voice Commands
We evaluate WearID with 20 representative voice commands that

involve highly sensitive information or functionalities. The voice

commands could be used by an adversary to access sensitive infor-

mation or functionalities. Particularly, the adversary could acquire

private information (e.g., schedule, password, email, contact list) of

users. With these voice commands, they may also conduct unau-

thorized purchases or manipulate smart home devices. Note that

we use voice commands of different lengths since to examine the

generality of WeaID.
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Table B: Representative words in voice commands.

ID Word ID Word ID Word ID Word

1 Tomorrow 6 Good morning 11 Events 16 Team information

2 Answer 7 Request 12 Remember 17 Shopping list

3 Weather 8 Country music 13 Password 18 Living room camera

4 Instrument 9 Spotify 14 Flight 19 Weekend forecast

5 Information 10 Next Appointment 15 New York 20 Flash Briefing

Table C: Example of privacy leakages from voice assistant systems.

Security issues Category Voice Command Examples Sentence Length

Potential privacy leakage

Event schedule

"What’s on my calendar for tomorrow" 6

"Where is my next appointment" 5

"List all events for January 1st" 6

"How much is a round-trip flight to New York" 9

Reminder

"Remember that my password is ’money’" 6

"What is my password" 4

"Add ’go to the grocery store’ to my to-do list" 10

Shopping account information
"What’s on my shopping list" 5

"Track my order" 3

Contact
"Read me my email" 4

"Call my mother" 3

Unauthorized operation

Neighborhood location
"Find me a Italian near my home" 7

"What is the traffic to my home" 7

Unauthorized purchase
"Add paper towels to my cart" 6

"Order all items in my cart" 6

Voice assistant

"Answer the call" 3

"Delete all my reminders" 4

"Play my favorite music on Spotify" 6

Access smart home devices
"Show the living room camera" 5

"Clear all Bluetooth devices" 4
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