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Abstract
Text entry is an inevitable task while using Virtual Reality
(VR) devices in a wide range of applications such as remote
learning, gaming, and virtual meeting. VR users enter pass-
words/pins to log in to their user accounts in various appli-
cations and type regular text to compose emails or browse
the internet. The typing activity on VR devices is believed to
be resistant to direct observation attacks as the virtual screen
in an immersive environment is not directly visible to others
present in physical proximity. This paper presents a video-
based side-channel attack, Hidden Reality (HR), that shows –
although the virtual screen in VR devices is not in direct sight
of adversaries, the indirect observations might get exploited
to steal the user’s private information.

The Hidden Reality (HR) attack utilizes video clips of the
user’s hand gestures while they type on the virtual screen to
decipher the typed text in various key entry scenarios on VR
devices including typed pins and passwords. Experimental
analysis performed on a large corpus of 368 video clips show
that the Hidden Reality model can successfully decipher an
average of over 75% of the text inputs. The high success
rate of our attack model led us to conduct a user study to
understand the user’s behavior and perception of security in
virtual reality. The analysis showed that over 95% of users
were not aware of any security threats on VR devices and
believed the immersive environments to be secure from digital
attacks. Our attack model challenges users’ false sense of
security in immersive environments and emphasizes the need
for more stringent security solutions in VR space.

1 Introduction

Research on attacks has demonstrated that adversaries can
steal target user’s private and sensitive information by un-
obtrusively videotaping user’s keyboards, monitors or touch
screens using hand-held camera-enabled devices [1–3]. How-
ever, security and privacy threats in VR devices where a user
operates and types on their device’s virtual screen in presence

Figure 1: An adversary’s sweet-spots to videotape target users’
hand gestures while they type on the virtual keypad in an
immersive environment is presented here. The boundary box
shows the visible hand gestures of the user captured in the
video clip.

of other people in a real environment [4] have been rarely
investigated and often discarded. While performing typing
operation on VR devices, VR user is required to make hand
movements using either controllers [5] or hand gestures [6]
to register their clicks or for keyboard navigation (e.g., the
bounding box in Figure 1 shows user’s interaction with his
VR device using hand gestures). Taking the case of typing
scenario in the immersive environment, we investigate secu-
rity vulnerabilities in VR devices by presenting a video-based
side-channel attack, Hidden Reality.

The Hidden Reality attack model relies only on the spatio-
temporal dynamics of the user’s hand gestures from stealthily
captured video clips. The HR attack can easily be launched
using only the recorded video footage and does not require
any user-specific training. The attack model requires (i) the
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Abstract
Text entry is an inevitable task while using Virtual Reality
(VR) devices in a wide range of applications such as remote
learning, gaming, and virtual meeting. VR users enter pass-
words/pins to log in to their user accounts in various appli-
cations and type regular text to compose emails or browse
the internet. The typing activity on VR devices is believed to
be resistant to direct observation attacks as the virtual screen
in an immersive environment is not directly visible to others
present in physical proximity. This paper presents a video-
based side-channel attack, Hidden Reality (HR), that shows -
although the virtual screen in VR devices is not in direct sight
of adversaries, the indirect observations might get exploited
to steal the user's private information.
The Hidden Reality (HR) attack utilizes video clips of the

user's hand gestures while they type on the virtual screen to
decipher the typed text in various key enty scenarios on VR
devices including typed pins and passwords. Experimental
analysis perfornied on a large corpus of 368 video clips show
that the Hidden Reality model can successfully decipher an
average of over 75 % of the text inputs. The high success
rate of our attack model led us to conduct a user study to
understand the user's behavior and perception of security in
virtual reality. The analysis showed that over 95 % of users
were not aware of any security threats on VR devices and
believed the immersive environments to be secure from digital
attacks. Our attack model challenges users, false sense of
security in immersive environments and emphasizes the need
for more stringent security solutions in VR space.

Figure I: An adversary's sweet-spots to videotape target users,
hand gestures while they type on the virtual keypad in an
immersive environment is presented here. The boundary box
shows the visible hand gestures of the user captured in the
video clip.

of other people in a real environment [4] have been rarely
investigated and often discarded. While perforniing typing
operation on VR devices, VR user is required to make hand
movements using either controllers [5] or hand gestures [6]
to register their clicks or for keyboard navigation (e.g., the
bounding box in Figure I shows user's interaction with his
VR device using hand gestures). Taking the case of typing
scenario in the immersive environment, we investigate secu-
rity vulnerabilities in VR devices by presenting a video-based
side-channel attack, Hidden Reality.
The Hidden Reality attack model relies only on the spatio-

temporal dynamics of the user's hand gestures from stealthily
captured video clips. The HR attack can easily be launched
using only the recorded video footage and does not require
any user-specific training. The attack model requires (i) the

I Introduction

Research on attacks has demonstrated that adversaries can
steal target user's private and sensitive inforniation by un-
obtrusively videotaping user's keyboards, monitors or touch
screens using hand-held camera-enabled devices [1-3]. How-
ever, security and privacy threats in VR devices where a user
operates and types on their device's virtual screen in presence
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user’s hand gestures to be visible in the recorded video for the
targeted typing activity and (ii) knowledge of the used virtual
keypad layout1 Upon launching, the HR model locates and
tracks the user’s hands, and filters the frames where the clicks
are detected. A click operation during typing indicates that
the desired key is entered or pressed on a virtual keyboard.
The HR model then maps the tracked hand pixel locations of
clicks to the known geometry of the virtual keyboard. The
attack deciphers the typed content or graphical-lock input
patterns by utilizing the mapped pixel locations on the keypad
layout. To the best of our knowledge, the Hidden Reality is
the first attack model on virtual reality inputs that relies only
on the stealthily captured hand gestures to decipher the typed
content and uncovers serious security threats in various typing
scenarios: (1) pin entry, (2) alphanumeric password entry, (3)
graphical pattern lock input, and (4) regular text typing.

The efficacy of the Hidden Reality model evaluated on a
large corpus of 368 video clips captured in various text entry
scenarios show that the attack can successfully: decode ⇡
95% of the digits in typed pins, infer an average of ⇡ 90%
of the characters in the regular typed text, and decipher ⇡
75% of the characters in typed passwords in the first five
guesses. The attack analysis of the graphical lock patterns in
our dataset shows that the HR model was able to reconstruct
100% of the pattern locks within the first three attempts.

The high inference rate by the Hidden Reality attack model:
(i) exposes VR users’ false perception of security and privacy
in immersive environments [9], and (ii) raises alarm to the
VR vendors and the security community to re-evaluate the
VR input design for security threats posed by the attacks such
as ours.

To put the practicality of the Hidden Reality attack model
into the perspective, we briefly discuss the viable assumptions
and requirements to successfully launch the attack. The Hid-
den Reality attack needs: (1) the captured video footage of the
targeted victim’s hand gestures while they type on their VR
device, and (2) knowledge of the victim’s keyboard layout.

Videotaping the victim’s hand gestures– The attacker can
stealthily record videos of a targeted victim’s hand gestures
while s/he interacts with their VR device. The head-mounted
displays (HMD) such as VR headsets partly or sometimes
completely block the users’ view of their physical surround-
ings [10]. The users are generally unaware of events in their
physical surroundings while using VR headsets. To re-affirm
this, we conducted a user study on user behavior and percep-
tion of security for virtual reality devices. The survey results
show that ⇡ 80% of users are generally unaware of their sur-
roundings in the real world when they wore the HMD and
were immersed in virtual reality (see Section 6).

1The keypad layout design can easily be guessed by the adversaries using
the publicly available information from the make and model of the VR
device’s vendor or by owning the same brand device themselves as the target
victim. Studies show that the majority of the population uses default keypad
design [7], and those who use custom-designed/random keypad layouts face
usability challenges [8].

Inference of the keyboard layout. The adversary can easily
determine the manufacturer of the VR device by looking at the
recorded videos or while videotaping the users. For example,
the HTC VR headset can be identified with the presence of a
headrest [11]. Similarly, Meta Quest is sleek in design and has
a head strap [12]. After knowing the VR device’s make and
model, details of default keyboard geometry can be obtained
either by owning it or finding google search images of the
keypad layout for the targeted device. The current version of
the HR attack model can easily be launched to decipher the
typed contents on the default keyboard of a VR device. This
shows a major security threat when the majority of the users
(over 80%) prefer using default and in-built keyboards [7].

Motivation Behind the Attack Model – VR devices are
no longer confined only to applications in the gaming
industry and are extended widely to other application
domains [13–20]. Existing studies show that usage of VR
devices is not only restricted to home or private spaces,
but also in semi-public and public places such as schools,
universities, office spaces, labs, and libraries where other
people are present in the physical surroundings [21], [22].
Considering a threat scenario where the VR user interacts
with their VR device in places where other people are
nearby, we introduce the Hidden Reality attack model that
successfully reconstructs over 75% of the typed content
while relying only on visible hand gestures captured in video
recordings of the user. An example scenario is illustrated
in Figure 1 where a user is located on the first floor of a
university building and the attacker records the user’s hand
gestures stealthily from a distance to not raise any suspicion.
In the case of long-distance videotaping, as shown in Figure
1, an optical zoom camera configuration can be utilized to
capture a clear view of hand movements.

Contributions – The following are the contributions
of the paper.

• We introduce a video-based side-channel attack, Hidden
Reality, on the users’ typing in immersive environments.
The attack model does not require user-specific training
and can be launched easily without raising any suspicion.
The model relies only on the spatio-temporal dynamics
of the user’s hand gestures captured in stealthily obtained
video clips.

• We collected a large corpus of 368 videos using a
consumer-grade smartphone camera, and rigorously eval-
uated the attack performance. The experiment results
show that the HR model can successfully decipher an av-
erage of⇡ 90% of characters in the typed text, decode⇡
95% of digits in pins, and decipher ⇡ 75% of characters
in the typed password in the first five guesses. Our attack
could successfully reconstruct all the graphical lock pat-
terns chosen by volunteer participants in our dataset in
less than three attempts.

user's hand gestures to be visible in the recorded video for the
targeted typing activity and (li) l(nowledge of the used virtual
keypad layout Upon launching, the HR model locates and
tracks the user's hands, and filters the frames where the clicks
are detected. A click operation during typing indicates that
the desired key is entered or pressed on a virtual keyboard.
The HR model then maps the tracked hand pixel locations of
clicks to the known geometry of the virtual keyboard. The
attack deciphers the typed content or graphical-lock input
patterns by utilizing the mapped pixel locations on the keypad
layout. To the best of our l(nowledge, the Hidden Reality is
the first attack model on virtual reality inputs that relies only
on the stealthily captured hand gestures to decipher the typed
content and uncovers serious security threats in various typing
scenarios: (l ) pin entry, (2) alphanumeric password enty, (3)
graphical pattern lock input, and (4) regular text typing.

The efficacy of the Hidden Reality model evaluated on a
large corpus of 368 video clips captured in various text enty
scenarios show that the attack can successfully: decode =
95 % of the digits in typed pins, infer an average of = 90 %
of the characters in the regular typed text, and decipher =
75 % of the characters in typed passwords in the first five
guesses. The attack analysis of the graphical lock patterns in
our dataset shows that the HR model was able to reconstruct
100 % of the pattern locks within the first three attempts.

The high inference rate by the Hidden Reality attack model:
(i) exposes VR users, false perception of security and privacy
in immersive environments [9], and (li) raises alarni to the
VR vendors and the security community to re-evaluate the
VR input design for security threats posed by the attacks such
as ours.

Inference of the keyboard layout. The adversary can easily
detern]ine the manufacturer of the VR device by looking at the
recorded videos or while videotaping the users. For example,
the HTC VR headset can be identified with the presence of a
headrest [1 1]. Similarly, Meta Quest is sleek in design and has
a head strap [12]. After l(nowing the VR device's make and
model, details of default keyboard geomety can be obtained
either by owning it or finding google search images of the
keypad layout for the targeted device. The current version of
the HR attack model can easily be launched to decipher the
typed contents on the default keyboard of a VR device. This
shows a major security threat when the majority of the users
(over 80 % ) prefer using default and in-built keyboards [7].

Motivation Behind the Attack Model - VR devices are
no longer confined only to applications in the gaming
industry and are extended widely to other application
domains [13-20]. Existing studies show that usage of VR
devices is not only restricted to home or private spaces,
but also in semi-public and public places such as schools,
universities, office spaces, labs, and libraries where other
people are present in the physical surroundings [21], [22].
Considering a threat scenario where the VR user interacts
with their VR device in places where other people are
nearby, we introduce the Hidden Reality attack model that
successfully reconstructs over 75 % of the typed content
while relying only on visible hand gestures captured in video
recordings of the user. An example scenario is illustrated
in Figure I where a user is located on the first floor of a
university building and the attacker records the user's hand
gestures stealthily from a distance to not raise any suspicion.
In the case of long-distance videotaping, as shown in Figure

, an optical zoom camera configuration can be utilized to
capture a clear view of hand movements.

To put the practicality of the Hidden Reality attack model
into the perspective, we briefly discuss the viable assumptions
and requirements to successfully launch the attack. The Hid-
den Reality attack needs: (l) the captured video footage of the
targeted victim's hand gestures while they type on their VR
device, and (2)1(nowledge of the victim's keyboard layout.

Videotaping the victim's hand gestures- The attacker can
stealthily record videos of a targeted victim's hand gestures
while s/he interacts with their VR device. The head-mounted
displays (HMD) such as VR headsets partly or sometimes
completely block the users, view of their physical surround-
ings [10]. The users are generally unaware of events in their
physical surroundings while using VR headsets. To re-affirn]
this, we conducted a user study on user behavior and percep-
tion of security for virtual reality devices. The survey results
show that = 80 % of users are generally unaware of their sur-
roundings in the real world when they wore the HMD and
were immersed in virtual reality (see Section 6).

The keypad layout design can easily be guessed by the adversaries using
the publicly available information from the make and model of the VR
device's vendor or by owning the same brand device themselves as the target
victim. Studies show that the majority of the population uses default keypad
design [7], and those who use custom-designed/random keypad layouts face
usability challenges [8].

Contributions
of the paper.

We introduce a video-based side-channel attack, Hidden
Reality, on the users, typing in immersive environments.
The attack model does not require user-specific training
and can be launched easily without raising any suspicion.
The model relies only on the spatio-temporal dynamics
of the user's hand gestures captured in stealthily obtained
video clips.

The following are the contributions

We collected a large corpus of 368 videos using a
consumer-grade smartphone camera, and rigorously eval-
uated the attack perforniance. The experiment results
show that the HR model can successfully decipher an av-
erage of = 90 % of characters in the typed text, decode =
95 % of digits in pins, and decipher = 75 % of characters
in the typed password in the first five guesses. Our attack
could successfully reconstruct all the graphical lock pat-
terns chosen by volunteer participants in our dataset in
less than three attempts.
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• We conducted a user study to understand the users’ per-
ception of the security of VR devices. The summary
results of our study show that – (i) the majority of users
believe that VR devices are secure for sensitive trans-
actions, (ii) over 95% of users were unaware that VR
devices can be subjected to digital attacks, and (iii) ⇡
45% of users currently use passwords, pins, or graphical
lock patterns to secure their sensitive information stored
on these devices. Through this work, we attempt to raise
awareness among users about security threats presented
by attacks such as ours in immersive environments.

Paper Organization - We present the threat scenarios in
Section 2. The implementation details of the Hidden Reality
attack model are included in Section 3. Section 4 discusses
the dataset and the experimental analysis. Performance evalu-
ation of the attack model is presented in Section 5. Section 6
presents a summary of the results of our user study. Section 7
discusses the limitations and countermeasures of the attack
model. We discuss the related work in Section 8 and finally,
we draw our conclusions in Section 9.

2 Threat Model
The Attacker – An attacker is a person who has some mali-
cious intent to decipher the context of the user-typed text or
steal the targeted user’s passwords, pins, or graphical patterns.
In the context of Hidden Reality attack model, the attacker
identifies the target victim, stealthily videotapes the victim’s
hand movement without raising suspicion while the victim
types on their VR devices, and launches the HR attack on the
target user to steal their private information. This can easily
be done when the target user uses their device and is directly
or indirectly present in the attacker’s sight. Additionally, VR
users are generally partly or completely unaware of their phys-
ical surroundings when they wear HMD.
The Attacker’s Perspective – The attacker who is interested in
stealing the target user’s information will monitor the user’s
activities and will start videotaping as soon as the user turns
on their device and wears the HMD. In some cases, the at-
tacker may get access to only part of the video recordings in
the case of stealthily obtaining existing videos (e.g., through
surveillance cameras). In this scenario, even if the attacker
could infer some characters of the password or pin, or context
of the text typed, they can still use other methods [23] with
highly reduced search space and make the victim vulnerable.
This can pose a serious security breach to users’ accounts and
their data.

2.1 Threat Scenarios
Assuming that the attacker developed or has access to the
HR model, video clips of the target user, and a known
geometry and keyboard layout of the virtual keyboard, below
mentioned realistic threat scenarios are designed.

1 Threat 1 – Graphical Pattern Lock Input. The user
draws the graphical lock pattern as a first step upon turning on
and wearing a VR device such as Meta Quest 2. An adversary
being aware of this setting can start video recording the hand
gestures of the user knowing the fact that the user will enter a
graphical lock pattern. Applying the steps involved in the HR
attack model (see Section 3), a person with malicious intent
can reconstruct the graphical lock patterns.

Figure 2: The user’s view of the virtual screen and virtual
keyboard while typing the password for their Gmail account
on Meta Quest 2.

2 Threat 2 – Password Entry Process. To login into a
web-based Gmail account on a VR device, the user enters
the word ‘Gmail’ on the browser and then types their user
credentials. Figure 2 depicts this scenario where the target
user is ready to type in their password. When the word
‘Gmail’ is encountered, the HR attack model identifies the
scenario where a user is most likely to type their Gmail id
and password. The attack can be extended easily to other
applications where password entry is required for device and
account access.

3 Threat 3 – email Entry Process. The HR model
checks for the criteria where the typed characters include ‘@’,
‘.com’, or ‘Gmail’ to conclude that the user is composing and
sending an email to friends, family, or colleagues. Again, the
HR attack can be extended to other email applications such
as ‘outlook’, and ‘yahoo’. By employing the steps of the HR
attack model, an adversary can infer the content of the email.

4 Threat 4 – Pin Entry Process. Users enter their
pin on the VR device’s number keypad to verify their identity
for applications that require pins. For example, in Meta Quest
2, a user could send or request money from a Facebook user
using the Facebook Messenger application. The criteria to
confirm this financial transaction is to enter a four-digit pin
on the virtual numeric keypad. By determining the keyboard
geometry (relatively small and square in shape) during the
character inference step of the Hidden Reality model, the HR
attack model can decipher the user’s pin.

We conducted a user study to understand the users, per-
ception of the security of VR devices. The summary
results of our study show that - (i) the majority of users
believe that VR devices are secure for sensitive trans-
actions, (li) over 95 % of users were unaware that VR
devices can be subjected to digital attacks, and (iii)
45 % of users currently use passwords, pins, or graphical
lock patterns to secure their sensitive inforniation stored
on these devices. Through this work, we attempt to raise
awareness among users about security threats presented
by attacks such as ours in immersive environments.

Threat l - Graphical Pattern Lock Input. The user
draws the graphical lock pattern as a first step upon turning on
and wearing a VR device such as Meta Quest 2. An adversary
being aware of this setting can start video recording the hand
gestures of the user knowing the fact that the user will enter a
graphical lock pattern. Applying the steps involved in the HR
attack model (see Section 3), a person with malicious intent
can reconstruct the graphical lock patterns.

Paper Organization - We present the threat scenarios in
Section 2. The implementation details of the Hidden Reality
attack model are included in Section 3. Section 4 discusses
the dataset and the experimental analysis. Perforniance evalu-
ation of the attack model is presented in Section 5. Section 6
presents a summary of the results of our user study. Section 7
discusses the limitations and counternieasures of the attack
model. We discuss the related work in Section 8 and finally,
we draw our conclusions in Section 9.

Figure 2: The user's view of the virtual screen and virtual
keyboard while typing the password for their Gmail account
on Meta Quest 2.

2 Threat Model
The Attacker- An attacker is a person who has some mali-
cious intent to decipher the context of the user-typed text or
steal the targeted user's passwords, pins, or graphical patterns.
In the context ofHidden Reality attack model, the attacker
identifies the target victim, stealthily videotapes the victim's
hand movement without raising suspicion while the victim
types on their VR devices, and launches the HR attack on the
target user to steal their private inforniation. This can easily
be done when the target user uses their device and is directly
or indirectly present in the attacker's sight. Additionally, VR
users are generally partly or completely unaware of their phys-
ical surroundings when they wear HMD.
The Attacker's Perspective - The attacker who is interested in
stealing the target user's infornlation will monitor the user's
activities and will start videotaping as soon as the user turns
on their device and wears the HMD. In some cases, the at-
tacker may get access to only part of the video recordings in
the case of stealthily obtaining existing videos (e.g., through
surveillance cameras). In this scenario, even if the attacker
could infer some characters of the password or pin, or context
of the text typed, they can still use other methods [23] with
highly reduced search space and make the victim vulnerable.
This can pose a serious security breach to users, accounts and
their data.

e Threat 2 - Password Entry Process. To login into a
web-based Gmail account on a VR device, the user enters
the word 'Gmail' on the browser and then types their user
credentials. Figure 2 depicts this scenario where the target
user is ready to type in their password. When the word
'Gmail' is encountered, the HR attack model identifies the
scenario where a user is most likely to type their Gmail id
and password. The attack can be extended easily to other
applications where password entry is required for device and
account access.

O Threat 3 email Entry Process. The HR model
checks for the criteria where the typed characters include ' @,,
'.com', or 'Gmail' to conclude that the user is composing and

sending an email to friends, family, or colleagues. Again, the
HR attack can be extended to other email applications such
as 'outlook', and 'yahoo'. By employing the steps of the HR
attack model, an adversary can infer the content of the email.

Threat 4 Pin Entry Process. Users enter their
pin on the VR device's number keypad to verify their identity
for applications that require pins. For example, in Meta Quest

, a user could send or request money from a Facebook user
using the Facebook Messenger application. The criteria to
confirni this financial transaction is to enter a four-digit pin
on the virtual numeric keypad. By detern]ining the keyboard
geometry (relatively small and square in shape) during the
character inference step of the Hidden Reality model, the HR
attack model can decipher the user's pin.

2.1 Threat Scenarios
Assuming that the attacker developed or has access to the
HR model, video clips of the target user, and a l(nown
geomety and keyboard layout of the virtual keyboard, below
mentioned realistic threat scenarios are designed.
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Figure 3: Figure shows the steps involved in the execution of the Hidden Reality attack model. An adversary captures the video
footage of a targeted user while the user is performing typing operation on their virtual screen. Region of interest is obtained by
localizing the typing hand and tracking the hand landmarks points on the preprocessed video. By mapping the tracked hand pixel
location coordinates obtained in the click detection step onto the known keyboard geometry, the typed text gets inferred.

Figure 4: Tracked hand landmark points of a targeted user’s
hand. MediaPipe_Hands library [24] was used to track all 21
landmark points throughout the video clip. The landmarks of
interest for implementing the attack model and identifying the
clicks are marked as #3, #4, #7, and #8 which represent the
fingertips of the index finger and thumb of the typing hand.
The image on the right shows the localization of the typing
hand as the rectangular bounding box. Red dots show the
hand landmark location coordinates in that frame.

5 Threat 5 – Surfing or Text Entry on Browser. In ad-
dition to the scenarios mentioned above, the user would also
surf or type random text on a VR device. When none of the
conditions mentioned in the above scenarios are satisfied, the
HR attack model concludes that the target user is browsing,
or typing random text, and then applies the steps of the model
to decode the text typed by the user. An example scenario
is when a user types the ‘amazon’ keyword, then the user
is most likely going to search for a product or perform a fi-
nancial transaction for purchasing the searched product using
their Amazon account.

3 Attack Approach

In this section, we provide implementation details of the Hid-
den Reality attack model that utilizes the spatio-temporal in-
formation of the user’s hand gestures while s/he types on their
device’s screen in an immersive VR environment. The attack
model takes a video segment of the typing activity correspond-
ing to a threat scenario as an input ( e.g., pin unlocking) and
then employs the key steps involved in the implementation of
the Hidden Reality model as depicted in Figure 3.

3.1 Implementation of HR Model
Details of the steps involved in the implementation of the
Hidden Reality attack for various attack scenarios follow.

Algorithm 1: Hand Localization and Tracking
Data: f rames
Result: hand_locations

1 f rame_num 100, pad 100
/* Find hands in every 100 frames */

2 while frames remain do
3 landmarks.append(get_hands( f rame,2))
4 f rame_num f rame_num+100
5 f rame get_ f rame( f rame_num);
6 end
/* Find the hand that moves the most */

7 labels,centers cluster(landmarks,n = 2)
8 foreach label in (0,1) do
9 indices where(labels = label)

10 hand landmarks[indices]
11 hand_vars.append(var(hand.x))
12 hand_bounds.append(max(hand)+

pad,min(hand)� pad)
13 end
14 bounds hand_bounds[argmax(hand_vars)]
15 hand_locs [ ]

/* Crop video to typing hand, find
landmarks for this hand */

16 foreach f rame in f rames do
17 cropped f rame[bounds]
18 landmarks get_hands(cropped,1)
19 hand_locs.append([ f rame_num, landmarks])
20 end
21 return hand_locs

3.1.1 Video Preprocessing

The beginning and ending segments of the captured video
footage that contain non-typing operations such as setting
up the user’s working boundary, and just visualizing the VR
environment are removed from the video recording. This was
done by watching the captured videos at a slow playback
speed on the VLC player. The resulting video clip is used for
further processing.

Video
Preprocessing Word Prediction

Hand Landmarks
TrackingVideo Recording Character InferenceClick Detection

Figure 3: Figure shows the steps involved in the execution of the Hidden Reality attack model. An adversary captures the video
footage of a targeted user while the user is perforniing typing operation on their virtual screen. Region of interest is obtained by
localizing the typing hand and tracking the hand landmarks points on the preprocessed video. By mapping the tracked hand pixel
location coordinates obtained in the click detection step onto the l(nown keyboard geometry, the typed text gets inferred.

Algorithm I: Hand Localization and Tracking
Data: frames
Result: hand locations

/* Find hands in every 100 frames

2 while frames remain do
landmarks.append(get_hands(frame, 2) )

/* Find the hand that rnOVeS the most

labels, centers < cluster(landmarks, n =
8 foreach label in (O, l) do

hand < landmarks[indices]
hand_vars.append(var(hand.x) )

pad,min(hand) - pad)

17

Figure 4: Tracked hand landmark points of a targeted user's
hand. MediaPipe_Hands library [24] was used to track all 21
landmark points throughout the video clip. The landmarks of
interest for implementing the attack model and identifying the
clicks are marked as #3, #4, #7, and #8 which represent the
fingertips of the index finger and thumb of the typing hand.
The image on the right shows the localization of the typing
hand as the rectangular bounding box. Red dots show the
hand landmark location coordinates in that frame.

O Threat 5 - Surfing or Text Entry on Browser. In ad-
dition to the scenarios mentioned above, the user would also
surf or type random text on a VR device. When none of the
conditions mentioned in the above scenarios are satisfied, the
HR attack model concludes that the target user is browsing,
or typing random text, and then applies the steps of the model
to decode the text typed by the user. An example scenario
is when a user types the 'amazon' keyword, then the user
is most likely going to search for a product or perforni a fi-
nancial transaction for purchasing the searched product using
their Amazon account.

12

13 end
14 bounds < hand_bounds[argmax(hand_vars)]

/* Crop video to typing hand, find
landmarks for this hand

16 foreach frame in frames do
17

landmarks < get_hands(cropped, l )
hand_locs.append( Iframe_num, landmarks] )

20 end
21 return hand locs

18

19

3 Attack Approach

In this section, we provide implementation details of the Hid-
den Reality attack model that utilizes the spatio-temporal in-
forniation of the user's hand gestures while s/he types on their
device's screen in an immersive VR environment. The attack
model takes a video segment of the typing activity correspond-
ing to a threat scenario as an input ( e.g., pin unlocking) and
then employs the key steps involved in the implementation of
the Hidden Reality model as depicted in Figure 3.

3.1.1 Video Preprocessing

The beginning and ending segments of the captured video
footage that contain non-typing operations such as setting
up the user's working boundary, and just visualizing the VR
environment are removed from the video recording. This was
done by watching the captured videos at a slow playback
speed on the VLC player. The resulting video clip is used for
further processing.

3.1 Implementation of HR Model
Details of the steps involved in the implementation of the
Hidden Reality attack for various attack scenarios follow.

Localization

I frame_num < 100, pad < 100

frame_num < frame_num + 100
frame < getJrame(frame_num.

6end

indices < where(labels = label)

hand_bounds.append(maK(hand) +

10

11

15 hand_locs < [ ]

cropped < frame[bounds]
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3.1.2 Localization and Hand Landmark Tracking

Firstly, the preprocessed video is converted into video frames.
Most of the video frames contained the presence of both the
hands of the targeted user: a non-stationary hand perform-
ing the typing operation using hand gestures on the virtual
keyboard, and a resting hand. For the subsequent steps in our
attack model to be efficient and accurate, videos are trimmed
to only contain the region of interest (ROI). We define ROI as
an area of video frames where only the typing hand is present
throughout the duration of the input.

We used MediaPipe_Hands [24] library for hand track-
ing in the video segment. MediaPipe_Hands is a machine
learning-based hand tracking solution to track multiple land-
mark points of the user’s hand in a video segment as shown
in Figure 4. The hand landmarks coordinates were considered
for every 100th frame in the video. This assumption is rea-
sonable because consideration of every frame to localize the
typing hand would take significantly larger computation time
and this interval provided a balance between the approxima-
tion of ROI and the efficiency of this step. This process of
extracting hand locations on every 100th frame is described
in steps 1-6 of Algorithm 1.

Figure 5: The Figure shows the average hand landmark posi-
tions of typing hand and the resting hand. Red dots denote a
resting hand as there is no or very minimum variance between
the data points and green dots represent the hand landmark
pixel location data of the typing hand.

After extracting the hand landmarks coordinates, the next
step is the creation of positional data lists to determine the typ-
ing hand and the bounds of the typing region. Positional data
consists of average hand landmark (x,y) coordinates lists for
each hand in the video. x and y coordinates represent the hori-
zontal and vertical positions respectively. The x-coordinates
list that showed the most variation in its x�axis is considered
to be the typing hand, as the other hand typically remained
stationary throughout the video. The positional data plotted
for typing and resting hand is shown in Figure 5.

If only the typing hand is present in the input video, this
step produces a list of positional coordinates for the typing
hand and, an empty list for the other hand. Using the positional
coordinates of the typing hand, we obtained the bounds of
the typing region. The right image in Figure 4 shows an

Algorithm 2: Click Detection
Data: hand_locations
Result: f rameNum,clickCoordinates

1 thumb [3,4], index [7,8]
/* get average hand positions, distances

between the thumb and index finger */
2 foreach entry in hand_data do
3 handPos.append(mean(entry))
4 distance.append(||entry[thumbPosition]�

entry[indexPosition]||2)
5 end
/* find the speed of hand */

6 speed ||handPos[1 :]�handPos[:�1]||2
/* normalize the metrics and combine */

7 distance normalize(smooth(distance))
8 speed normalize(smooth(speed))
9 metric 0.5 ·distance+0.5 · speed
/* find peaks in the data */

10 f rameNum f ind_peaks(metric)
11 return f rameNum, handPos[ f rameNum]

example of localization, where a rectangular bounding box
represents the ROI. The bounding box shows the bounds of
the typing hand in that specific frame. Red dots represent the
hand landmark pixel coordinates in that frame. Steps 8-13 of
Algorithm 1 computes the variation in positional coordinates
and determines the bounds of detected hands. Steps 16-21 in
Algorithm 1 show the extraction of hand landmark position
data in the cropped ROI for each frame, returning a list of
the detected hand pixel data with the corresponding frame
numbers.

Figure 6: Hand gesture to point at the desired character on
Meta Quest 2 [6] (left). A user performs a click operation to
enter the selected character (right).

3.1.3 Click Detection

In the click detection step, clicks performed by the users are
identified using the hand pixel data acquired from the previous
step. A click on the virtual keyboard implies that the user has
entered the desired character by performing a pinch operation
on that key. In a pinch operation, the thumb and index finger-
tips will be in close contact as shown in Figure 6. The land-
mark points #3 and #4 represent the thumb fingertips and the
landmark points #7 and #8 are for index fingertips as shown
in Figure 4. To identify a click, two metrics are computed

3.1.2 Localization and Hand Landmark Tracking Algorithm 2: Click Detection
Data: hand locations

I thumb < [3,4], index < [7, 8]
/* get average hand pOSitiOnS, distances

between the thumb and index finger

2 foreach entry in hand_data do
handPos.append(mean(entry) )

Firstly, the preprocessed video is converted into video frames.
Most of the video frames contained the presence of both the
hands of the targeted user: a non-stationary hand perforni-
ing the typing operation using hand gestures on the virtual
keyboard, and a resting hand. For the subsequent steps in our
attack model to be efficient and accurate, videos are trimmed
to only contain the region of interest (ROI). We define ROI as
an area of video frames where only the typing hand is present
throughout the duration of the input.

We used MediaPipe_Hands [24] library for hand track-
ing in the video segment. MediaPipe_Hands is a machine
learning-based hand tracking solution to track multiple land-
mark points of the user's hand in a video segment as shown
in Figure 4. The hand landmarks coordinates were considered

thfor every 100 frame in the video. This assumption is rea-
sonable because consideration of every frame to localize the
typing hand would take significantly larger computation time
and this interval provided a balance between the approxima-
tion of ROI and the efficiency of this step. This process of

thextracting hand locations on every 100 frame is described
in steps 1-6 of Algorithm l.

/* find the speed of hand

/* norrnalize the metrics and Combine

7 distance < normalize(smooth(distance))
8 speed < normalize(smooth(speed))
9 metric < 0.5. distance + 0.5. speed
/* find peaks in the data

11 return frameNum, handPoslframeNum

example of localization, where a rectangular bounding box
represents the ROI. The bounding box shows the bounds of
the typing hand in that specific frame. Red dots represent the
hand landmark pixel coordinates in that frame. Steps 8-13 of
Algorithm I computes the variation in positional coordinates
and detern]ines the bounds of detected hands. Steps 16-21 in
Algorithm I show the extraction of hand landmark position
data in the cropped ROI for each frame, returning a list of
the detected hand pixel data with the corresponding frame
numbers.

0.55

Figure 5: The Figure shows the average hand landmark posi-
tions of typing hand and the resting hand. Red dots denote a
resting hand as there is no or very minimum variance between
the data points and green dots represent the hand landmark
pixel location data of the typing hand.

After extracting the hand landmarks coordinates, the next
step is the creation of positional data lists to detern]ine the typ-
ing hand and the bounds of the typing region. Positional data
consists of average hand landmark (x? y) coordinates lists for
each hand in the video. x and y coordinates represent the hori-
zontal and vertical positions respectively. The x-coordinates
list that showed the most variation in its x- axis is considered
to be the typing hand, as the other hand typically remained
stationary throughout the video. The positional data plotted
for typing and resting hand is shown in Figure 5.

If only the typing hand is present in the input video, this
step produces a list of positional coordinates for the typing
hand and, an empty list for the other hand. Using the positional
coordinates of the typing hand, we obtained the bounds of
the typing region. The right image in Figure 4 shows an

Figure 6: Hand gesture to point at the desired character on
Meta Quest 2 [6] (left). A user perforn]s a click operation to
enter the selected character (right).

3.1.3 Click Detection

In the click detection step, clicks perforn]ed by the users are
identified using the hand pixel data acquired from the previous
step. A click on the virtual keyboard implies that the user has
entered the desired character by perforn]ing a pinch operation
on that key. In a pinch operation, the thumb and index finger-
tips will be in close contact as shown in Figure 6. The land-
mark points #3 and #4 represent the thumb fingertips and the
landmark points #7 and #8 are for index fingertips as shown
in Figure 4. To identify a click, two metrics are computed

Result: frameNum, clickCoordinates

distance.append( | |entry[thumbPosition] -
entry[indexPosition] | 12)

send

6 speed < | |handPos[I :] - handPos[: _l] | 12

10 frameNum < find_peaks(metric)

0.60
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based on the aforementioned landmark data for thumb and
index fingertips. The first metric is distance - the euclidean
distance between the landmark points: thumbPosition and
the indexPosition of the typing hand for each frame is com-
puted. That is, if the distance between the thumbPosition and
indexPosition is minimum in a frame compared to its adjacent
frames, then that frame is detected as a clicked frame. The dis-
tance formula is given in Equation (1) where thumbPosition
and indexPosition are the average coordinates of thumb and
index fingertips respectively.

distance = ||thumbPosition� indexPosition||2 (1)

Speed is the second metric to detect the click. The speed
of the hand movement reduces when the user reaches the
desired character and the user’s hand comes to rest during the
click operation. Speed is computed as the euclidean distance
between average hand landmarks data on the adjacent frames
in the video. For example, consider the current frame, previous
frames, and next frames as i, i�10, and i+10 respectively.
If the user had registered a click and entered a character in
frame i, then the speed value will be minimum for ith frame
when compared to the neighboring frames.

The speed formula is given below where handPos[i] de-
notes the average value of the hand landmark points of the ith
frame and handPos[i� 1] represents the average hand land-
marks data of the previous frame, and so on:

speed = ||handPos[i]�handPos[i�1]||2 (2)

Steps 1-5 of Algorithm 2 computes the distance metric and
stores it in a list. Step 6 in Algorithm 2 computes speed values.
Steps 7-9 describe the process of normalizing distance and
speed metrics and their combined values are stored in another
list. Utilizing this combined list along with the frame num-
bers, the f ind_peaks function from SciPy.signal is applied
that returns the local minima as shown in step 10. The local
minima returned from the previous step represent that the
click operations are performed by the users. Frame numbers
along with the hand position coordinates are returned for the
frames in which the click is detected.

3.1.4 Character Inference

The frame numbers where a click is detected and their corre-
sponding hand location coordinates returned from the click
detection step are used to infer the characters typed by the
users. To do this, the hand location coordinates are mapped to
the keyboard geometry of the Meta Quest 2, returning the five
closest character predictions, sorted by their distance. The
steps involved in inferring the characters typed by the target
user are as follows:

• The keyboard geometry is determined based on the
bounds of the hand location data. The bounds represent
the minimum and maximum values of the hand location

(a) Candidate pixel coordinates for the deciphered
characters.

(b) Final mapped coordinates for the deciphered
characters.

(c) Pin lock virtual keypad. (d) Pattern lock virtual keypad.

Figure 7: Figure 7a shows the mapping of hand pixel location
coordinates with that of the keyboard geometry. The figure
shows the existence of outliers. Figure 7b depicts the mapping
of the location coordinates after removing the outlier points.
Figure 7c shows the mapping of clicked hand location coordi-
nates onto the number keypad of Meta Quest 2. The graphical
lock pattern grid on Meta Quest 2 is shown in Figure 7d.

coordinates obtained from the click detection step. With
edges evenly spaced across the bounds, the keyboard is
divided into ten columns and four rows to adhere to the
keys layout of the virtual keyboard as shown in Figure
7a. For mapping a pin, the numeric keypad is divided
into four rows and five columns as shown in Figure 7c.

• Figure 7a shows the mapping of hand location coordi-
nates to the keyboard geometry. Since some of the hand
location data points were outliers, the HR model ex-
cluded them from the data. This is done using the local
outlier factor algorithm from sklearn.neighbors. Figure
7b shows the mapping of the location coordinates after
removing the outlier points.

• For each video segment, the key center coordinates
(xn,yn) of each key in the keyboard are computed. Char-
acter inference is performed by computing the euclidean
distance between each hand location data point and the
key centers. The resulting distance values are sorted in
order of increasing distances, from d=1 to d=35.

based on the aforementioned landmark data for thumb and
index fingertips. The first metric is distance - the euclidean
distance between the landmark points: thumbPosition and
the indexPosition of the typing hand for each frame is com-
puted. That is, if the distance between the thumbPosition and
indexPosition isminimum in a frame compared to its adjacent
frames, then that frame is detected as a clicked frame. The dis-
tance fornlula is given in Equation (l) where thumbPosition
and indexPosition are the average coordinates of thumb and
index fingertips respectively.

(a) Candidate pixel coordinates for the deciphered
characters.

distance = | |thumbPosition - indexPosition | | 2 (1)

Speed is the second metric to detect the click. The speed
of the hand movement reduces when the user reaches the
desired character and the user's hand comes to rest during the
click operation. Speed is computed as the euclidean distance
between average hand landmarks data on the adjacent frames
in the video. For example, consider the current frame, previous
frames, and next frames as i, i - 10, and i + 10 respectively.
If the user had registered a click and entered a character in

thframe i, then the speed value will be minimum for i frame
when compared to the neighboring frames.

The speed forniula is given below where handPos[i] de-
notes the average value of the hand landmark points of the ith
frame and handPos[i - 1] represents the average hand land-
marks data of the previous frame, and so on:

(b) Final mapped coordinates for the deciphered
characters.

(c) Pin lock virtual keypad. (d) Pattern lock virtual keypad.

Figure 7: Figure 7a shows the mapping of hand pixel location
coordinates with that of the keyboard geometry. The figure
shows the existence of outliers. Figure 7b depicts the mapping
of the location coordinates after removing the outlier points.
Figure 7c shows the mapping of clicked hand location coordi-
nates onto the number keypad of Meta Quest 2. The graphical
lock pattern grid on Meta Quest 2 is shown in Figure Id.

(2)

Steps 1-5 of Algorithm 2 computes the distance metric and
stores it in a list. Step 6 in Algorithm ? computes speed values.
Steps 7-9 describe the process of nornializing distance and
speed metrics and their combined values are stored in another
list. Utilizing this combined list along with the frame num-
bers, the find_peaks function from SciPy.signal is applied
that returns the local minima as shown in step 10. The local
minima returned from the previous step represent that the
click operations are perforn]ed by the users. Frame numbers
along with the hand position coordinates are returned for the
frames in which the click is detected.

coordinates obtained from the click detection step. With
edges evenly spaced across the bounds, the keyboard is
divided into ten columns and four rows to adhere to the
keys layout of the virtual keyboard as shown in Figure
7a. For mapping a pin, the numeric keypad is divided
into four rows and five columns as shown in Figure 7c.

Figure 7a shows the mapping of hand location coordi-
nates to the keyboard geomety. Since some of the hand
location data points were outliers, the HR model ex-
cluded them from the data. This is done using the local
outlier factor algorithm from sklearn.neighbors. Figure
7b shows the mapping of the location coordinates after
removing the outlier points.
For each video segment, the key center coordinates
(x.,Yn) of each key in the keyboard are computed. Char-
acter inference is perfornied by computing the euclidean
distance between each hand location data point and the
key centers. The resulting distance values are sorted in
order of increasing distances, from d=1 to d=35.

3.1.4 Character Inference

The frame numbers where a click is detected and their corre-
sponding hand location coordinates returned from the click
detection step are used to infer the characters typed by the
users. To do this, the hand location coordinates are mapped to
the keyboard geometry of the Meta Quest 2, returning the five
closest character predictions, sorted by their distance. The
steps involved in inferring the characters typed by the target
user are as follows:

The keyboard geometry is deterniined based on the
bounds of the hand location data. The bounds represent
the minimum and maximum values of the hand location

speed = | |handPos[i] - handPos[i - 1] | 12
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Figure 8: ‘Star’ marker depicts the hand pixel location co-
ordinates of a click in an example frame and dots represent
the key center coordinates (xn,yn). The top seven key predic-
tions which are closer to the clicked hand location coordinates
sorted by distances (d1 to d7) are shown here.

d=35 represents the number of keys on the keyboard.
The top five distance values (d=5) were considered for
our analysis as there was no significant improvement
in accuracy after including values of d greater than 5.
Hence we concluded that distance values (d=5) result
in the optimal character predictions or guesses in our
study. The indices of these distance values were used
to return the corresponding characters. Figure 8 shows
the prediction of the top 7 characters based on the hand
location data of an identified click.

• Finally, the character predictions based on the top five
guesses are added to a data frame.

3.1.5 Word Prediction

Some of the attack scenarios require a word prediction step;
e.g., decoding email content. To predict the words, the char-
acters inferred from the previous step were combined into
different groups, delimited by the space character. In addition
to the space delimiter, the length of the word is considered an
attribute to group the characters. After the groups are identi-
fied, a similarity metric is computed between the combined
groups and words in the dictionary. The dictionary used for
word prediction is Brown Corpus [25]. The similarity metric
computation is performed by using a modified edit distance
algorithm [26] to find the similarity of the group to the given
word. The word from the dictionary with the highest similarity
metric value is the predicted word.

4 Experiments

4.1 Data Collection
With the approval of our university’s Institutional Review
Board (IRB), we invited 42 volunteer participants for our data
collection study. The participants were first briefed about the
purpose and the procedure2 of our study, and were asked to

2The participants were told that their hand gestures while typing on the
virtual screen will be videotaped and the same will be used to analyze the
security and privacy vulnerabilities in the VR devices. The participants were
not specifically informed about the usage of their video clips for inferring
the typed text/passwords.

provide their written consent to participate in the study and
for videotaping their hand gestures while they typed on the
virtual keyboard of the Meta Quest 2. The volunteer partici-
pants (Male: 23, Female: 18, Other: 1) recruited for our data
collection activity include students and postdocs between the
ages of 19 and 35 years. As per the approved IRB protocol,
every participant was briefed and was asked to report immedi-
ately if they experience uneasiness or any kind of discomfort
during the experiment3. However, during our data collection
activity, none of the participants experienced or reported any
such side effects.
Data Collection Sessions. We collected data in two different
sessions4: Session I and Session II. In each session, the vol-
unteer participant, first, wore the Meta Quest 2 device, then
set the working boundary and stays within it for perform-
ing the typing operation. However, the users were allowed
to move within the working boundary. The registered volun-
teers were invited to participate in Session II, 5-7 days after
Session I. Because the participant pool also consisted of in-
experienced VR users, before these two sessions, there was a
practice session where these subjects were given time to learn
to type on the Meta Quest 2 and themselves familiar with
the device. Also, during this time, the participants chose their
passwords, pins, graphical-lock patterns, and email content.
We did not record any data during the practice sessions. A
total of 368 videos were recorded from 42 volunteer partic-
ipants from both sessions while the users performed typing
operations during different attack scenarios. The duration of
videos ranged from 10 to 60 sec depending upon the attack
scenario.

4.2 Attack Scenarios
The HR attack model presented in this paper can differentiate
the attack scenarios depending on the action the user performs
and the text the user types on the virtual keyboard. Based
on the identified threat scenario, a suitable attack model is
deployed. Detailed information is provided below.

Scenario 1: Graphical Pattern Lock Input
SETUP. After switching on a VR device and then wearing it,
the first step the user does is to unlock the device by using a
graphical lock pattern if there exists a lock pattern. To launch
an attack during this case, the following setup was performed

3Our data collection experiment protocol had procedures in place to
handle situations of users feeling nausea, dizziness, loss of balance, etc. In
addition, participants with a history of conditions such as vertigo, epilepsy,
seizures, and balance disorder were not allowed to participate in our experi-
ments.

4Existing studies [27] show the intra-user variance in the users’ hand
movements behavior while they type on a virtual screen using their hand ges-
tures. Hence, we collected hand movements data in two different sessions to
capture regular variations in the participants’ gestures and to have a stringent
evaluation of our attack model. The volunteer participants entered the same
chosen password, pin, and graphical lock pattern for both sessions (I and II)
with the same experimental setup.

provide their written consent to participate in the study and
for videotaping their hand gestures while they typed on the
virtual keyboard of the Meta Quest 2. The volunteer partici-
pants (Male: 23, Female: 18, Other: l) recruited for our data
collection activity include students and postdocs between the
ages of 19 and 35 years. As per the approved IRB protocol,
every participant was briefed and was asked to report immedi-
ately if they experience uneasiness or any kind of discomfort
during the experiment . However, during our data collection
activity, none of the participants experienced or reported any
such side effects.
Data Collection Sessions. We collected data in two different
sessions . Session I and Session ll. In each session, the vol-
unteer participant, first, wore the Meta Quest 2 device, then
set the working boundary and stays within it for perforni-
ing the typing operation. However, the users were allowed
to move within the working boundary. The registered volun-
teers were invited to participate in Session ll, 5-7 days after
Session I. Because the participant pool also consisted of in-
experienced VR users, before these two sessions, there was a
practice session where these subjects were given time to learn
to type on the Meta Quest 2 and themselves familiar with
the device. Also, during this time, the participants chose their
passwords, pins, graphical-lock patterns, and email content.
We did not record any data during the practice sessions. A
total of 368 videos were recorded from 42 volunteer partic-
ipants from both sessions while the users perfornied typing
operations during different attack scenarios. The duration of
videos ranged from 10 to 60 sec depending upon the attack
scenario.

Figure 8: 'Star' marker depicts the hand pixel location co-
ordinates of a click in an example frame and dots represent
the key center coordinates (x.,Yn). The top seven key predic-
tions which are closer to the clicked hand location coordinates
sorted by distances (dl to d7) are shown here.

d=35 represents the number of keys on the keyboard.
The top five distance values (d=5) were considered for
our analysis as there was no significant improvement
in accuracy after including values of d greater than 5.
Hence we concluded that distance values (d=5) result
in the optimal character predictions or guesses in our
study. The indices of these distance values were used
to return the corresponding characters. Figure 8 shows
the prediction of the top 7 characters based on the hand
location data of an identified click.

Finally, the character predictions based on the top five
guesses are added to a data frame.

3.1.5 Word Prediction

Some of the attack scenarios require a word prediction step;
e.g., decoding email content. To predict the words, the char-
acters inferred from the previous step were combined into
different groups, delimited by the space character. In addition
to the space delimiter, the length of the word is considered an
attribute to group the characters. After the groups are identi-
fied, a similarity metric is computed between the combined
groups and words in the dictionary. The dictionary used for
word prediction is Brown Corpus [25]. The similarity metric
computation is perfornied by using a modified edit distance
algorithm [26] to find the similarity of the group to the given
word. The word from the dictionary with the highest similarity
metric value is the predicted word.

4.2 Attack Scenarios
The HR attack model presented in this paper can differentiate
the attack scenarios depending on the action the user perfornis
and the text the user types on the virtual keyboard. Based
on the identified threat scenario, a suitable attack model is
deployed. Detailed inforn]ation is provided below.

Scenario I: Graphical Pattern Lock Input
SETUP. After switching on a VR device and then wearing it,
the first step the user does is to unlock the device by using a
graphical lock pattern if there exists a lock pattern. To launch
an attack during this case, the following setup was perfornied

4 Experiments

4.1 Data Collection
Our data collection experiment protocol had procedures in place to

handle situations of users feeling nausea, dizziness, loss of balance, etc. In
addition, participants with a history of conditions such as vertigo, epilepsy,
seizures, and balance disorder were not allowed to participate in our experi-
ments.

Existing studies [27] show the intra-user variance in the users, hand
movements behavior while they type on a virtual screen using their hand ges-
tures. Hence, we collected hand movements data in two different sessions to
capture regular variations in the participants, gestures and to have a stringent
evaluation of our attack model. The volunteer participants entered the same
chosen password, pin, and graphical lock pattern for both sessions (I and ll)
with the same experimental setup.

With the approval of our university's Institutional Review
Board (IRB), we invited 42 volunteer participants for our data
collection study. The participants were first briefed about the
purpose and the procedure of our study, and were asked to

The participants were told that their hand gestures while typing on the
virtual screen will be videotaped and the same will be used to analyze the
security and privacy vulnerabilities in the VR devices. The participants were
not specifically infornied about the usage of their video clips for inferring
the typed text/passwords.
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by the volunteer participants on Meta Quest 2 during the
practice session. The participants picked a pattern of their
choice connecting dots on the screen in a particular shape
and order from the Settings! Security option available in
the VR device. To set the graphical lock pattern, the user
performs the ‘point and pinch’ operation on the starting dot
of the lock pattern on the VR screen, draws the pattern with
the fingers pinched, and then releases their fingers once the
drawing of the pattern is complete. The default graphical
pattern input grid on Meta Quest 2 has eight dots as shown in
Figure 7d. Quest 2 has a requirement of connecting at least
four dots to be considered a valid graphical lock pattern.

Once the participants were successful in unlocking the
device multiple times, they were invited to Sessions I and II.

In total, 50 video recordings were captured during both
sessions for this attack scenario.
IDENTIFICATION OF ATTACK SCENARIO. The first and
foremost operation performed by the user after turning on
and wearing a VR device is to unlock it before starting to use
it. Even when the user removes the VR device and wears it
again, still the user needs to unlock the device. We use this as
a criterion to identify that the user is entering a graphical-lock
pattern.
THE ATTACK MODEL. Implementation of the HR attack
during this scenario includes the following steps: (i) video
preprocessing to discard beginning and ending frames
where the user does not perform any click/‘point and pinch’
operation, (ii) localization and hand tracking to identify
the ROI to obtain the hand landmark points and store the
location coordinates data, (iv) click detection to detect the
clicks. The final step in the model is to plot the stored lo-
cation coordinates to reconstruct the entered graphical pattern.

Scenario 2: Password Entry
SETUP. The HR attack is launched while the user logs in to
their user accounts by typing the password. The volunteer
participants were asked to choose random passwords5. The
users generated multiple alphanumeric passwords of 10-17
characters long with atleast one uppercase, lowercase, and
special character using the Memorable Password Generator
tool [28] until they found a password of their choice for our
experiments.

For the password entry scenario, we created test google
accounts. Each user logged into the Gmail account using the
password practiced and set during the practice session of
the data collection activity. A new video was recorded each
time the user logged into the Gmail account. This procedure
was repeated five times. A total of 50 video recordings were
collected from five volunteers during sessions I and II.

5To minimize the risk of volunteer participants’ sensitive information
leaking during our experiment, we asked them to type only randomly gen-
erated passwords/pins for our data collection experiments. We specifically
instructed participants to not input their present, past, or possible future
passwords, pins, or lock patterns.

IDENTIFICATION OF ATTACK SCENARIO. If the text typed
by the user contains the word ‘Gmail’ then the user is very
likely to enter their password as the next step to login into their
Gmail account. This is a valid assumption for any web-based
application such as Gmail, Amazon.

The user needs to open the browser and type the word
‘Gmail’ to log in to their Google/Gmail accounts. This sce-
nario can be extended to any other user accounts such as
‘yahoo’, ‘outlook’, and ‘amazon’ too by including them in the
search keywords.
THE ATTACK MODEL. The steps involved in launching an
attack during this scenario to decipher the passwords are
from steps 3.1.1 to 3.1.4 of the attack model.

Scenario 3: email Content Entry
SETUP. In this attack scenario, we briefed the situation to
users where they will be sending an email to their friend, fam-
ily, or colleague regarding a meet-up or updating them with
some personal or sensitive information. During the practice
session of data collection activity, the users thought of a mes-
sage that is to be sent to a friend, family member, or colleague.
Once the users were ready for the actual data recording ses-
sion, we recorded the videos of them while they were com-
posing and sending the email using the Gmail application on
the web browser.
IDENTIFICATION OF ATTACK SCENARIO. Because there
is no inbuilt Gmail application on VR devices similar to that
of smartphones, and tablets to directly open it and compose
an email, the user will need to open the browser, type ‘Gmail’
to login to their Gmail account, and then compose an email.
This scenario can be considered a successor of the previous
attack scenario. If the search keyword or search character
typed by the user includes ‘@’, ‘.com’, and ‘Gmail’, then we
conclude that the target users are composing an email to be
sent. This scenario can be extended to other applications such
as ‘yahoo’, and ‘outlook’ too by including them in the search
keywords.
THE ATTACK MODEL. This attack model comprises of
implementation steps from 3.1.1 to 3.1.5.

Scenario 4: Pin Entry
SETUP. For this attack scenario, we created two sample Face-
book accounts where one account will serve as a sender ac-
count and the other as a receiver account. We then added bank
accounts to both of them. During the practice session, volun-
teer participants get themselves familiarised with Facebook
Pay and set the pin of their choice for verifying the financial
transaction. Facebook Pay is a functionality in Facebook Mes-
senger where a sender can choose a receiver and send/request
money. Facebook Pay has criteria that the length of the pin
required to confirm the financial transaction will need to be
exactly four characters. During the data recording session,
participants confirmed the financial transaction of sending $1
from the sender account to the receiver account by entering

by the volunteer participants on Meta Quest 2 during the
practice session. The participants picked a pattern of their
choice connecting dots on the screen in a particular shape
and order from the Settings 4 Security option available in
the VR device. To set the graphical lock pattern, the user
perfornis the 'point and pinch, operation on the starting dot
of the lock pattern on the VR screen, draws the pattern with
the fingers pinched, and then releases their fingers once the
drawing of the pattern is complete. The default graphical
pattern input grid on Meta Quest 2 has eight dots as shown in
Figure 7d. Quest 2 has a requirement of connecting at least
four dots to be considered a valid graphical lock pattern.

Once the participants were successful in unlocking the
device multiple times, they were invited to Sessions I and ll.

In total, 50 video recordings were captured during both
sessions for this attack scenario.
IDENTIFICATION OF AITACK SCENARIO. The first and
foremost operation perfornied by the user after turning on
and wearing a VR device is to unlock it before starting to use
it. Even when the user removes the VR device and wears it
again, still the user needs to unlock the device. We use this as
a criterion to identify that the user is entering a graphical-lock
pattern.
THE AITACK MODEL. Implementation of the HR attack
during this scenario includes the following steps: (i) video
preprocessing to discard beginning and ending frames
where the user does not perforni any click/'point and pinch,
operation, (ll) localization and hand tracking to identify
the ROI to obtain the hand landmark points and store the
location coordinates data, (iv) click detection to detect the
clicks. The final step in the model is to plot the stored lo-
cation coordinates to reconstruct the entered graphical pattern.

IDENTIFICATION OFAITACK SCENARIO. If the text typed
by the user contains the word 'Gmail' then the user is very
likely to enter their password as the next step to login into their
Gmail account. This is a valid assumption for any web-based
application such as Gmail, Amazon.

The user needs to open the browser and type the word
'Gmail' to log in to their Google/Gmail accounts. This sce-
nario can be extended to any other user accounts such as
'yahoo outlook,, and 'amazon' too by including them in the
search keywords.
THE AITACK MODEL. The steps involved in launching an
attack during this scenario to decipher the passwords are
from steps 3.1. I to 3.1.4 of the attack model.

Scenario 3: email Content Entry
SETUP. In this attack scenario, we briefed the situation to
users where they will be sending an email to their friend, fam-
ily, or colleague regarding a meet-up or updating them with
some personal or sensitive inforniation. During the practice
session of data collection activity, the users thought of a mes-
sage that is to be sent to a friend, family member, or colleague.
Once the users were ready for the actual data recording ses-
sion, we recorded the videos of them while they were com-
posing and sending the email using the Gmail application on
the web browser.
IDENTIFICATION OF AITACK SCENARIO. Because there
is no inbuilt Gmail application on VR devices similar to that
of smartphones, and tablets to directly open it and compose
an email, the user will need to open the browser, type 'Gmail'
to login to their Gmail account, and then compose an email.
This scenario can be considered a successor of the previous
attack scenario. If the search keyword or search character
typed by the user includes ' @,, '.com', and 'Gmail', then we
conclude that the target users are composing an email to be
sent. This scenario can be extended to other applications such
as 'yahoo', and 'outlook' too by including them in the search
keywords.
THE AITACK MODEL. This attack model comprises of
implementation steps from 3.1. I to 3.1.5.

Scenario 2: Password Entry
SETUP. The HR attack is launched while the user logs in to
their user accounts by typing the password. The volunteer
participants were asked to choose random passwords . The
users generated multiple alphanumeric passwords of 10-17
characters long with atleast one uppercase, lowercase, and
special character using the Memorable Password Generator
tool [28] until they found a password of their choice for our
experiments.

For the password entry scenario, we created test google
accounts. Each user logged into the Gmail account using the
password practiced and set during the practice session of
the data collection activity. A new video was recorded each
time the user logged into the Gmail account. This procedure
was repeated five times. A total of 50 video recordings were
collected from five volunteers during sessions I and II.

Scenario 4: Pin Entry
SETUP. For this attack scenario, we created two sample Face-
book accounts where one account will serve as a sender ac-
count and the other as a receiver account. We then added bank
accounts to both of them. During the practice session, volun-
teer participants get themselves familiarised with Facebook
Pay and set the pin of their choice for verifying the financial
transaction. Facebook Pay is a functionality in Facebook Mes-
senger where a sender can choose a receiver and send/request
money. Facebook Pay has criteria that the length of the pin
required to confirni the financial transaction will need to be
exactly four characters. During the data recording session,
participants confirnled the financial transaction of sending $1
from the sender account to the receiver account by entering

To minimize the risk of volunteer participants, sensitive information
leaking during our experiment, we asked them to type only randomly gen-
erated passwords/pins for our data collection experiments. We specifically
instructed participants to not input their present, past, or possible future
passwords, pins, or lock patterns.
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Table 1: Phrases typed by the volunteer participants during
the data collection activity. Every English alphabets appear at
least once in each phrase.

# Phrase Session
1 The quick brown fox jumps over the lazy dog Session I/II
2 The five boxing wizards jump quickly Session I
3 Waxy and quivering jocks fumble the pizza Session II

the four-digit pin set by them during the practice session. In
total, 50 videos were recorded from Sessions I and II.

IDENTIFICATION OF ATTACK SCENARIO. The identifica-
tion of the pin entry process is done based on the determina-
tion of the keyboard geometry in the character inference step.
If the keyboard geometry was relatively small and possesses
a square shape, as shown in Figure 7c, then this attack model
is launched.
THE ATTACK MODEL. To launch this attack model, we
implemented steps 3.1.1 to 3.1.4. In step 3.1.4 which is a
character inference step, we use a pin keypad in place of a
QWERTY keyboard.

Scenario 5: Surfing or Text Entry on Browser
SETUP. During this scenario, users typed the phrases men-
tioned in Table 1 on the VR device’s browser. This scenario
can be compared to the task where the user surfs through the
browser by typing text for searching a product, learn about
new technology, etc. The volunteer participants opened the
browser on Quest 2 and typed phrases 1 and 2 from Table 1
during Session I and phrases 1 and 3 during Session II. All
26 alphabets occurred at least once in each phrase. A separate
video was recorded for each phrase. We collected 84 videos
from 42 participants during session I and 84 videos during
session II with a total of 168 videos.

IDENTIFICATION OF ATTACK SCENARIO. If there are no
criteria matching any of the above-mentioned attack scenarios,
then the model concludes that the target user is performing
activities such as browsing, or typing random text.
THE ATTACK MODEL. All the steps of the attack process
starting from 3.1.1 which is video preprocessing to 3.1.5
which is word prediction was involved here.

5 Evaluation of HR Model

In this section, we present the overall success rate for infer-
ring the text typed in the video recordings captured from 42
volunteer participants. Evaluation of the HR model was per-
formed during all the attack scenarios where the user types
passwords, pins, graphical-lock patterns, email content, and
random text.

An accuracy metric was used to evaluate the performance
of the HR attack model. Accuracy is the ratio of the number

of characters that are correctly predicted to the number of
actual characters typed, as shown in the following equation.

CharacterAccuracy =
Characters correctly inferred

Characters typed
(3)

Character accuracy is in turn dependent on the click de-
tection step which identifies the clicks. The click detection
algorithm detects whether a click had occurred or not and
returns the frame number along with their respective hand
pixel coordinates. The performance of the click detection step
is denoted using the equation given below.

ClicksDetect% =
UC + NC

UC + NC + EC + MC
(4)

We denote UC as user_clicks that represent the actual
click performed by the user, NC as not_a_click where the
target user performs other operations such as navigating
through the keyboard looking for the desired key. EC and MC
denote extra_user_clicks and missed_user_clicks respectively.
Extra_user_clicks indicates that the model has falsely
detected a user click and missed_user_clicks represents the
number of actual user clicks missed by the HR model.

(a) Example graphical-lock pattern 1

(b) Example graphical-lock pattern 2

Figure 9: Possible ways of overlaying the tracked hand loca-
tion coordinates predicted by the HR attack model onto the
graphical pattern input grid of Meta Quest 2 is shown here.
The arrows in Figures 9a and 9b represent the direction of the
lines drawn to complete the chosen graphical pattern.

Graphical Pattern Lock Input. The HR attack model’s per-
formance for deconstructing graphical patterns is measured
using the number of attempts required to unlock a VR de-
vice [29,30]. The number of attempts to deconstruct a pattern
is directly proportional to the possible ways of overlaying
the geometrical structure predicted by the model onto the
graphical-lock pattern grid screen. On evaluating the perfor-
mance of the HR attack model, the results show that all the
graphical-lock patterns chosen by the users in our data collec-
tion activity can be predicted and can unlock a VR device in
a maximum of three attempts.

Figure 9 shows that the graphical pattern in 9a can be
overlaid in three different ways on the input screen and hence
this pattern can be guessed in three attempts while the pattern

Table I: Phrases typed by the volunteer participants during
the data collection activity. Every English alphabets appear at
least once in each phrase.

of characters that are correctly predicted to the number of
actual characters typed, as shown in the following equation.

Characters correctly inferred
Characters typedPhrase Session (3)

The quick brown fox jumps over the lazy dog
The five boxing wizards jump quickly

Waxy and quivering jocks fumble the pizza
Session I
Session II

Character accuracy is in turn dependent on the click de-
tection step which identifies the clicks. The click detection
algorithm detects whether a click had occurred or not and
returns the frame number along with their respective hand
pixel coordinates. The perforniance of the click detection step
is denoted using the equation given below.

the four-digit pin set by them during the practice session. In
total, 50 videos were recorded from Sessions I and II.

IDENTIFICATION OF ATTACK SCENARIO. The identifica-
tion of the pin enty process is done based on the detern]ina-
tion of the keyboard geometry in the character inference step.
If the keyboard geometry was relatively small and possesses
a square shape, as shown in Figure 7c, then this attack model
is launched.
THE AITACK MODEL. To launch this attack model, we
implemented steps 3.1.1 to 3.1.4. In step 3.1.4 which is a
character inference step, we use a pin keypad in place of a
QWERTY keyboard.

(4)

We denote UC as user_clicks that represent the actual
click perfornied by the user, NC as not_a_click where the
target user perfornis other operations such as navigating
through the keyboard looking for the desired key. EC and MC
denote extra_user_clicks and missed_user_clicks respectively.
Extra_user_clicks indicates that the model has falsely
detected a user click and missed_user_clicks represents the
number of actual user clicks missed by the HR model.

Scenario 5: Surfing or Text Entry on Browser
SETUP. During this scenario, users typed the phrases men-
tioned in Table l on the VR device's browser. This scenario
can be compared to the task where the user surfs through the
browser by typing text for searching a product, learn about
new technology, etc. The volunteer participants opened the
browser on Quest 2 and typed phrases l and 2 from Table I

during Session I and phrases l and 3 during Session ll. All
26 alphabets occurred at least once in each phrase. A separate
video was recorded for each phrase. We collected 84 videos
from 42 participants during session I and 84 videos during
session II with a total of 168 videos.

(a) Example graphical-lock pattern I

(b) Example graphical-lock pattern 2

Figure 9: Possible ways of overlaying the tracked hand loca-
tion coordinates predicted by the HR attack model onto the
graphical pattern input grid of Meta Quest 2 is shown here.
The arrows in Figures 9a and 9b represent the direction of the
lines drawn to complete the chosen graphical pattern.

IDENTIFICATION OFAITACK SCENARIO. If there are no
criteria matching any of the above-mentioned attack scenarios,
then the model concludes that the target user is perforniing
activities such as browsing, or typing random text.
THE AITACK MODEL. All the steps of the attack process
starting from 3.1.] which is video preprocessing to 3.1.5
which is word prediction was involved here.

Graphical Pattern Lock InpuL The HR attack model's per-
forniance for deconstructing graphical patterns is measured
using the number of attempts required to unlock a VR de-
vice [29, 30]. The number of attempts to deconstruct a pattern
is directly proportional to the possible ways of overlaying
the geometrical structure predicted by the model onto the
graphical-lock pattern grid screen. On evaluating the perfor-
mance of the HR attack model, the results show that all the
graphical-lock patterns chosen by the users in our data collec-
tion activity can be predicted and can unlock a VR device in
a maximum of three attempts.

Figure 9 shows that the graphical pattern in 9a can be
overlaid in three different ways on the input screen and hence
this pattern can be guessed in three attempts while the pattern

5 Evaluation of HR Model

In this section, we present the overall success rate for infer-
ring the text typed in the video recordings captured from 42
volunteer participants. Evaluation of the HR model was per-
fornied during all the attack scenarios where the user types
passwords, pins, graphical-lock patterns, email content, and
random text.

An accuracy metric was used to evaluate the perfornlance
of the HR attack model. Accuracy is the ratio of the number

CharacterAccuracy =

Session I/II

UC+NC
UC+NC+EC+MCClicksDetect % =
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Figure 10: Figure shows the character-wise accuracy of each
phrase typed by the user mentioned in Table 1 on a virtual
keyboard.

Figure 11: Confusion matrix of characters is shown in this
figure. Numbers on the diagonal represent the average per-
centage values of true positives.

in 9b requires only two attempts for unlocking the device.
Arrows on patterns in Figure 9 depict the direction (left to
right) of lines. The direction of lines is predicted based on
the hand pixel coordinates of the frames. If the coordinate
values increase along the x-axis then the direction of the
horizontal line is from left to right, otherwise vice versa.
The same logic is applied to the prediction of vertical lines too.

Password Entry Process. Upon encountering the keyword
‘Gmail’, our attack model determines that the user is going to
login to Gmail or Google account. Our model can decode an
average of ⇡ 75% of the password characters typed in the
top five guesses as shown in Table 2. In addition to character
prediction performance, end-to-end password inference was
also evaluated. Our model could successfully break over 18%
of passwords in the top 15 guesses. The readers are referred
to Appendix C for details on end-to-end attack evaluation.

Table 2: Character accuracy of the HR model with top five
predictions while the attack was implemented in different
attack scenarios such as the user typing password, sending an
email, entering text in the browser, and using Facebook Pay
for performing financial transactions.

# Guess Phrases
(in %)

Gmail
Password

(in %)

Email
Content
(in %)

Facebook
Pay

Pin (in %)
1 57 51.39 50.88 75
2 74.5 62.73 64.24 90
3 82.31 69.58 75.18 90
4 86.93 73.45 81.02 95
5 90.5 74.73 83.59 95

email Entry Process. The HR attack model can decipher ⇡
84% of the characters typed in an email content in the top
five guesses. This means that an adversary can easily gain
the context of any sensitive information exchanged among
friends, family, or colleagues. Table 2 shows the average
percentage of characters predicted correctly during the first
to fifth guess.

Pin Entry Process. After determining that the user is
using a numeric keypad based on the bounds and keyboard
geometry, the appropriate attack model was launched. The
HR attack model was able to decipher 90% of digits in the
first three guesses and could correctly predict 95% of the
digits in the top five guesses for pin entry as shown in Table 2.
Our results show that the HR model was able to successfully
infer three out of five typed pins in the top three guesses and
could correctly decipher four out of five typed pins in the top
four guesses.

Surfing or Text Entry on Browser. The HR attack model
achieved an average accuracy of ⇡ 58% with the first guess
while the users were typing phrases. Extending the predictions
to the top three and five guesses, the number of characters
inferred correctly was ⇡ 83% and ⇡ 90.5% respectively.

The average character accuracy for each phrase is shown
in Figure 10. The figure depicts that the space character was
the best predicted. This is because it is the only key in the
row. The next best-predicted characters were ‘a’, ‘e’, and
‘l’ because these keys are on the edges of the keyboard. In
general, the keys on the edges are better predicted, which
makes sense as they have fewer neighbors than other keys.
Most of the time, the character that was predicted wrong was
‘g’. Figure 11 shows the percentage of times a character is
classified as true positive. True positive means the user-typed
character and the character predicted by the HR model are
both the same. As seen in this plot, false positives are usually
the neighboring characters of the true character. An example
of a false positive is when the user did not type a character ‘a’
while the model predicted it as ‘a’.

Table 2: Character accuracy of the HR model with top five
predictions while the attack was implemented in different
attack scenarios such as the user typing password, sending an
email, entering text in the browser, and using Facebook Pay
for perforn]ing financial transactions.

Password
(in Q/0 )

51.39
62.73
69.58
73.45
74.73

Content
(in 0/0 )

50.88
64.24
75.18
81.02
83.59

# Guess Phrases
(in 0/0 )

Facebook
Pay

Pin (in 0/0 )
75
90
90
95
95

57
74.5
82.31
86.93
90.5

Figure 10: Figure shows the character-wise accuracy of each
phrase typed by the user mentioned in Table l on a virtual
keyboard.

email Entry Process. The HR attack model can decipher =
84 % of the characters typed in an email content in the top
five guesses. This means that an adversary can easily gain
the context of any sensitive inforniation exchanged among
friends, family, or colleagues. Table 2 shows the average
percentage of characters predicted correctly during the first
to fifth guess.
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19 Pin Entry Process. After deterniining that the user is

using a numeric keypad based on the bounds and keyboard
geometry, the appropriate attack model was launched. The
HR attack model was able to decipher 90 % of digits in the
first three guesses and could correctly predict 95 % of the
digits in the top five guesses for pin entry as shown in Table 2.
Our results show that the HR model was able to successfully
infer three out of five typed pins in the top three guesses and
could correctly decipher four out of five typed pins in the top
four guesses.

14
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True Character

Figure I I: Confusion matrix of characters is shown in this
figure. Numbers on the diagonal represent the average per-
centage values of true positives. Surfing or Text Entry on Browser. The HR attack model

achieved an average accuracy of = 58 % with the first guess
while the users were typing phrases. Extending the predictions
to the top three and five guesses, the number of characters
inferred correctly was = 83 % and = 90.5 % respectively.

The average character accuracy for each phrase is shown
in Figure l O. The figure depicts that the space character was
the best predicted. This is because it is the only key in the
row. The next best-predicted characters were 'a', 'e', and
'I' because these keys are on the edges of the keyboard. In
general, the keys on the edges are better predicted, which
makes sense as they have fewer neighbors than other keys.
Most of the time, the character that was predicted wrong was
'g'. Figure I I shows the percentage of times a character is
classified as true positive. True positive means the user-typed
character and the character predicted by the HR model are
both the same. As seen in this plot, false positives are usually
the neighboring characters of the true character. An example
of a false positive is when the user did not type a character 'a'
while the model predicted it as 'a'.

in 9b requires only two attempts for unlocking the device.
Arrows on patterns in Figure 9 depict the direction (left to
right) of lines. The direction of lines is predicted based on
the hand pixel coordinates of the frames. If the coordinate
values increase along the x-axis then the direction of the
horizontal line is from left to right, otherwise vice versa.
The same logic is applied to the prediction of vertical lines too.

Password Entry Process. Upon encountering the keyword
'Gmail', our attack model deterniines that the user is going to
login to Gmail or Google account. Our model can decode an
average of = 75 % of the password characters typed in the
top five guesses as shown in Table 2. In addition to character
prediction perfornlance, end-to-end password inference was
also evaluated. Our model could successfully break over 18 %
of passwords in the top 15 guesses. The readers are referred
to Appendix - for details on end-to-end attack evaluation.
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6 User Perception of Security and Privacy in
Virtual Reality

At the end of session II of the data collection activity, vol-
unteer participants were asked to complete the user survey
study (see Appendix A for more details on the user study) by
clicking on the Google survey link shared with them. The aim
of this user study was to analyze and assess users’ behavior
and perceptions of security, and privacy in immersive envi-
ronments. Figure 12 shows the summary results of our user
study. The summary results show that ⇡ 95% of the users
were unaware that VR devices can be subjected to digital
attacks. Around 40% of the users who participated in our
study indicated their preference for using hand gestures as an
input method to perform typing on the VR device compared
to the use of the hand controller method. The preference of
authentication systems by the users in immersive devices is
still passwords, pins, or graphical-lock patterns for ⇡ 45% of
the users in our study. That being mentioned, although many
users indicated that they would like biometric authentication
if it is available in VR devices, current popular VR/AR de-
vices do not provide biometric authentication mechanisms.
Our study also shows that the majority of the users (55%)
were comfortable performing sensitive transactions on a VR
device such as online payment for an order, sending money
using Facebook Pay, Google Pay, etc.

The summary results evidently show the false perception of
security among the users. The demonstration of the HR attack
is a challenge to users’ perception of security and uncovers
a serious concern and threat to the users’ digital footprints.
With the increased use of VR devices for typing private text
and performing sensitive transactions, this paper argues the
need for defensive mechanisms to ensure the users’ digital
security.

Figure 12: Summary of user responses for the questions re-
lated to user experience and perception of privacy and security
on virtual reality devices is shown here.

7 Discussion

Evaluation of the HR Model with Varying Parameters – The
HR attack design does not make any assumptions about the
VR device type, or location (indoor or outdoor of semi-public
and public places) from which the video recording is obtained.
The attack utilizes the user’s visible hand gestures captured
in the video footage to decipher the typed text. Although
we evaluated the performance of the attack on the Meta
Quest2 VR headset, Hidden Reality attack will work on other

VR headsets as well with slight modification on the known
keypad layout according to the VR device used. However,
investigating and evaluating the HR model performance on
different VR/AR headsets, and with different brightness is
part of our future work.

We also evaluated the effect of recording distance and
recording angle on the attack performance. The analysis
results show that the attack performance decreases when
recording is done from a longer recording distance. However,
the performance improves when the adversary uses a
high-end camera with an optical zoom feature to capture the
user’s hand gestures. Also, the attack performance decreases
when the recording is captured from the right side of the
user compared to the recording captured from the front and
left angle to the user. The detailed analysis is presented in
Appendix B.

Sources of Errors and Incorrect Predictions – Although
the HR attack model sometimes makes errors in typed key
inferences, it reduces the search space significantly compared
to a random guessing attack. The following are sources of
errors in inferences made by the HR attack model.

• The model sometimes gets confused with an adjacent key
to the actual key typed on the virtual keyboard. In this
scenario, the attackers can generate subsequent candi-
date passwords by replacing the deciphered key with its
adjacent keys (i.e. the key in the up, down, left, and right
direction to the predicted character) to get the correct
inference.

• The attack model sometimes misses detecting a click
gesture or detects false clicks leading to an incorrect
prediction. This is due to a sudden change in the user’s
typing speed within a typing session (missed clicks), and
an unregistered click where the key pressed by the user
is not entered on the VR device’s screen (extra clicks).

Partly Obscuring Hand Gestures – The hand gestures of the
targetted user can sometimes be partly obscured in video
recordings captured by an adversary. This can be due to
the entry of humans or objects between an attacker and the
user. The HR model would miss detecting keys typed in
the obscured portion of the video recording. However, for
a targeted user, an attacker can easily obtain several video
recordings over a few days (assuming the user password
remains unchanged in that duration) to get a more confident
prediction. Additionally, fused prediction decisions will
be able to infer keys that might get missed using only one
video recording with obscured hand gestures in general. That
being mentioned, completely obscuring hand gestures while
typing may serve as a countermeasure for attacks such as ours.

Human Spy vs HR Model – It could be possible for hu-
mans to monitor users’ hand gestures and map their clicks
onto the known keyboard layout. However, due to the need

6 User Perception of Security and Privacy in
Virtual Reality

VR headsets as well with slight modification on the l(nown
keypad layout according to the VR device used. However,
investigating and evaluating the HR model perforniance on
different VR/AR headsets, and with different brightness is
part of our future work.

We also evaluated the effect of recording distance and
recording angle on the attack perforniance. The analysis
results show that the attack performance decreases when
recording is done from a longer recording distance. However,
the perforniance improves when the adversary uses a
high-end camera with an optical zoom feature to capture the
user's hand gestures. Also, the attack perforn]ance decreases
when the recording is captured from the right side of the
user compared to the recording captured from the front and
left angle to the user. The detailed analysis is presented in
Appendix B.

At the end of session ll of the data collection activity, vol-
unteer participants were asked to complete the user survey
study (see Appendix A for more details on the user study) by
clicking on the Google survey link shared with them. The aim
of this user study was to analyze and assess users, behavior
and perceptions of security, and privacy in immersive envi-
ronments. Figure 12 shows the summary results of our user
study. The summary results show that = 95 % of the users
were unaware that VR devices can be subjected to digital
attacks. Around 40 % of the users who participated in our
study indicated their preference for using hand gestures as an
input method to perfornl typing on the VR device compared
to the use of the hand controller method. The preference of
authentication systems by the users in immersive devices is
still passwords, pins, or graphical-lock patterns for = 45 % of
the users in our study. That being mentioned, although many
users indicated that they would like biometric authentication
if it is available in VR devices, current popular VR/AR de-
vices do not provide biometric authentication mechanisms.
Our study also shows that the majority of the users (55 % )
were comfortable perforn]ing sensitive transactions on a VR
device such as online payment for an order, sending money
using Facebook Pay, Google Pay, etc.

The summary results evidently show the false perception of
security among the users. The demonstration of the HR attack
is a challenge to users, perception of security and uncovers
a serious concern and threat to the users, digital footprints.
With the increased use of VR devices for typing private text
and perforniing sensitive transactions, this paper argues the
need for defensive mechanisms to ensure the users, digital
security.

Sources of Errors and Incorrect Predictions - Although
the HR attack model sometimes makes errors in typed key
inferences, it reduces the search space significantly compared
to a random guessing attack. The following are sources of
errors in inferences made by the HR attack model.

The model sometimes gets confused with an adjacent key
to the actual key typed on the virtual keyboard. In this
scenario, the attackers can generate subsequent candi-
date passwords by replacing the deciphered key with its
adjacent keys (i.e. the key in the up, down, left, and right
direction to the predicted character) to get the correct
inference.
The attack model sometimes misses detecting a click
gesture or detects false clicks leading to an incorrect
prediction. This is due to a sudden change in the user's
typing speed within a typing session (missed clicks), and
an unregistered click where the key pressed by the user
is not entered on the VR device's screen (extra clicks).

Awareness of Physical surroundings
Perfom]ing Financial Transactions

Share VR Device with others
Hand Gestures as Preferred Input Method

Awareness of Digital Threats on VR Devices

Partly Obscuring Hand Gestures - The hand gestures of the
targetted user can sometimes be partly obscured in video
recordings captured by an adversary. This can be due to
the entry of humans or objects between an attacker and the
user. The HR model would miss detecting keys typed in
the obscured portion of the video recording. However, for
a targeted user, an attacker can easily obtain several video
recordings over a few days (assuming the user password
remains unchanged in that duration) to get a more confident
prediction. Additionally, fused prediction decisions will
be able to infer keys that might get missed using only one
video recording with obscured hand gestures in general. That
being mentioned, completely obscuring hand gestures while
typing may serve as a counternieasure for attacks such as ours.

Figure 12: Summary of user responses for the questions re-
lated to user experience and perception of privacy and security
on virtual reality devices is shown here.

7 Discussion

Evaluation of the HR Model with Varying Parameters- The
HR attack design does not make any assumptions about the
VR device type, or location (indoor or outdoor of semi-public
and public places) from which the video recording is obtained.
The attack utilizes the user's visible hand gestures captured
in the video footage to decipher the typed text. Although
we evaluated the perforniance of the attack on the Meta
Quest2 VR headset, Hidden Reality attack will work on other

Human Spy vsHRModel- It could be possible for hu-
mans to monitor users, hand gestures and map their clicks
onto the known keyboard layout. However, due to the need
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for precise hand tracking techniques for determining the
user’s hand location pixel coordinates, humans can lack
efficiency when predicting the text typed by the users as
shown in the work by Balzarotti et al. [1]. Our HR model,
on the other hand, uses the hand tracking algorithm [24] to
obtain the pixel coordinates of the hand movements and
clicks to decode passwords, pins, graphical-lock patterns,
and regular text typed by the users with high accuracy and
efficiency.

Countermeasures and Potential Mitigation – We propose the
following countermeasures to mitigate the security threats by
the attacks such as the HR attack model that can be used to
steal the users’ sensitive information.

• Randomization techniques such as dynamically chang-
ing the key layout or using a mutated keyboard by shuf-
fling the key locations and sizes can be used to mitigate
this family of attacks [31–33]. However, the solutions
like randomized and custom keyboard designs raise us-
ability concerns [8, 34].

• VR users can choose passwords/pins with characters
chosen from the center of the keyboard, which has more
neighbors than the edges. This is because the HR model
has exhibited low accuracy in predicting characters sur-
rounded by neighbors as depicted in Figure 10.

• Completely or partly obscuring the hand gestures from
external views while using VR devices will serve as a
defense against attacks such as ours. For example, if the
targetted victim is facing a wall during a VR interaction,
adversaries will have a restricted view of the victim’s
hand gestures. This method can be used to combat at-
tacks like ours since it requires video recordings with
visible hand movements of the targeted user.

8 Related Work

Existing research shows that VR/AR devices are vulnerable
to different types of attacks. For example, they can be targeted
through network attacks, motion sensors-based attacks, etc.

8.1 Attacks Targeted to VR/AR Devices
Visual side-channels-based attack. The work that most closely
relates to our work is perhaps the attack model by Ling et
al. [35] to predict the passwords typed by users. There are
several factors that put the HR attack apart from that designed
by Ling et al. First, the attack model by Ling et al. utilizes
3D video recordings of the headset and videos of fingertip
taps on the touchpad of the Samsung VR headset to be able
to launch an attack. Second, their attack model requires prior
calibration of the stereo camera using calibration algorithm
[36] for recording the target user maneuvering their device
and entering passwords. Finally, the attack by Ling et al. [35]
relies on the user typing an anchor (e.g., go, enter) key to

backtrack from that known key location. The combination of
these factors makes the HR attack a completely different kind
of threat compared to that presented in [35]. On the other hand,
the HR attack model relies only on the video recording of hand
movements captured using consumer-grade smartphones or
any video recording device, without a need for use of a high-
end stereo camera, video clips of a combination of HMD and
finger interaction, or calibration of the camera. The HR attack
can easily be launched on the go even by an adversary who
does not possess deep technical expertise.
Motion sensors-based attack. An attack presented by Ling
et al. [35] utilizes the data collected from the motion sensors
inbuilt into the pointing device and headsets using malware
to predict the passwords.

Kim et al. [37] proposed an interface to control VR (Virtual
Reality) content, games, and animations in real-time using
the user’s breath and the acceleration sensor of a mobile de-
vice. Shi et al. [38] presented a motion sensor-based speech
eavesdropping attack referred to as Face-mic. Another work
on motion sensors-based attack is presented in [39]. Meteriz-
Yildiran et al. [40] presented a key inference attack on in-air
typing on AR devices. Their attack model utilizes the inbuilt
motion sensors data from the AR device to track the user’s
hand movements. The aforementioned attacks assume the
adversary has access to the VR/AR device’s motion sensor
data. On the other hand, the HR attack model does not make
any such assumptions.
Network and WiFi signals-based attack. VR-spy developed by
Arafat et al. [41] recognizes the virtual keystrokes using chan-
nel state information (CSI) of WiFi signals. VR-spy requires
access to the user’s wireless network setup such as the user’s
WiFi transmitter, receiver, router, and network interface card.
In contrast, the HR model relies only on the short video clips
of the user’s hand gestures recorded using an external camera
and does not require access to the user’s wireless network.
Yarramreddy et al. [42] recover forensically relevant data
such as user names, user profile pictures, events, and system
information using network traffic. Their attack requires the
installation of Wireshark software by an adversary to access
network traffic.
Other Attacks. A malicious game referred to as an escape
room that deceives the user as a genuine application was
designed by Nair et al. [43]. This application secretly collects
user information such as height and wingspan, demographics
like age and gender biometrics, network details, etc. within a
few minutes of the gameplay by the target user.

8.2 Attacks on Other Smart Wearables
Some of the related work that includes the attacks performed
on wearable devices, and smartphones to infer the text typed
by the users is presented below.
Video recording-based attack. Balzarotti et al. [1] presented
an attack model to recover the text typed by the users while

for precise hand tracking techniques for deterniining the
user's hand location pixel coordinates, humans can lack
efficiency when predicting the text typed by the users as
shown in the work by Balzarotti et al. [1]. Our HR model,
on the other hand, uses the hand tracking algorithm [24] to
obtain the pixel coordinates of the hand movements and
clicks to decode passwords, pins, graphical-lock patterns,
and regular text typed by the users with high accuracy and
efficiency.
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inbuilt into the pointing device and headsets using malware
to predict the passwords.

Kim et al. [37] proposed an interface to control VR (Virtual
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the user's breath and the acceleration sensor of a mobile de-
vice. Shi et al. [38] presented a motion sensor-based speech
eavesdropping attack referred to as Face-mic. Another work
on motion sensors-based attack is presented in [39]. Meteriz-
Yildiran et al. [40] presented a key inference attack on in-air
typing on AR devices. Their attack model utilizes the inbuilt
motion sensors data from the AR device to track the user's
hand movements. The aforementioned attacks assume the
adversary has access to the VR/AR device's motion sensor
data. On the other hand, the HR attack model does not make
any such assumptions.
Network and WiFi signals-based attack. VR-spy developed by
Arafat et al. [41] recognizes the virtual keystrokes using chan-
nel state inforn]ation (CSI) of WiFi signals. VR-spy requires
access to the user's wireless network setup such as the user's
WiFi transmitter, receiver, router, and network interface card.
In contrast, the HR model relies only on the short video clips
of the user's hand gestures recorded using an external camera
and does not require access to the user's wireless network.
Yarramreddy et al. [42] recover forensically relevant data
such as user names, user profile pictures, events, and system
inforniation using network traffic. Their attack requires the
installation of Wireshark software by an adversary to access
network traffic.
Other Attacks. A malicious game referred to as an escape
room that deceives the user as a genuine application was
designed by Nair et al. [43]. This application secretly collects
user inforniation such as height and wingspan, demographics
like age and gender biometrics, network details, etc. within a
few minutes of the gameplay by the target user.

Countermeasures and Potential Mitigation -We propose the
following counternieasures to mitigate the security threats by
the attacks such as the HR attack model that can be used to
steal the users, sensitive inforn]ation.

Randomization techniques such as dynamically chang-
ing the key layout or using a mutated keyboard by shuf-
fling the key locations and sizes can be used to mitigate
this family of attacks [31-33]. However, the solutions
like randomized and custom keyboard designs raise us-
ability concerns [8, 34].
VR users can choose passwords/pins with characters
chosen from the center of the keyboard, which has more
neighbors than the edges. This is because the HR model
has exhibited low accuracy in predicting characters sur-
rounded by neighbors as depicted in Figure l O.

Completely or partly obscuring the hand gestures from
external views while using VR devices will serve as a
defense against attacks such as ours. For example, if the
targetted victim is facing a wall during a VR interaction,
adversaries will have a restricted view of the victim's
hand gestures. This method can be used to combat at-
tacks like ours since it requires video recordings with
visible hand movements of the targeted user.

8 Related Work

Existing research shows that VIUAR devices are vulnerable
to different types of attacks. For example, they can be targeted
through network attacks, motion sensors-based attacks, etc.

8.1 Attacks Targeted to VWAR Devices
Wisual side-channels-based attack. The work that most closely
relates to our work is perhaps the attack model by Ling et
al. [35] to predict the passwords typed by users. There are
several factors that put the HR attack apart from that designed
by Ling et al. First, the attack model by Ling et al. utilizes
3D video recordings of the headset and videos of fingertip
taps on the touchpad of the Samsung VR headset to be able
to launch an attack. Second, their attack model requires prior
calibration of the stereo camera using calibration algorithm
[36] for recording the target user maneuvering their device
and entering passwords. Finally, the attack by Ling et al. [35]
relies on the user typing an anchor (e.g., go, enter) key to

8.2 Attacks on Other Smart Wearables
Some of the related work that includes the attacks perfornied
on wearable devices, and smartphones to infer the text typed
by the users is presented below.
Video recording-based attack. Balzarotti et al. [1] presented
an attackmodel to recover the text typed by the users while
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they were performing the text entry process on the physi-
cal keyboard. Their model was able to predict 82% of the
language-based and context-based text in the top 50 guesses
utilizing the video recording captured. Attacks presented by
Shukla et al. [3,44] and Jingchao et al. [45] infers the pins and
passwords typed by the user utilizing the video footage of the
part of the user’s hands and the backside of the smartphone
or tablet on which the pin or password typing is performed.
Typing on a smartphone or tablet device requires users to
touch and type on the device’s screen. Typing on a VR device
is completely in the air and requires users to locate and per-
form pinch and type operations. The attack models presented
in [3, 44, 45] will fail to detect pinch and click operations and
hence will fail to work on VR devices. In their work, Sabra
et al. [46] show that an adversary can decipher the text typed
by a user when they type on their desktop/laptop keyboard
while attending a video meeting. Their attack assumes that
the attacker can join the user’s video meeting and hence can
access the video feed remotely. The HR model accesses the
user’s typing hand gestures from an external camera while
the user types on the device’s virtual screen to access any
application.

Chen et al. introduced an attack, EyeTell [47], that utilizes
video recording of the user’s eye movements to infer the keys
typed by the user on their mobile devices. This kind of attack
cannot be launched on a VR device because the user’s eyes
are obscured while wearing the VR headset and hence the
attacker will not have access to the user’s eye movements to
launch the attack. Some of the other related video recording-
based attacks are presented in [48–51].

Reflection-based attack. Yue et al. [52, 53] presented a de-
formable part-based model (DPM) to infer the passwords
typed on the touch screen utilizing the shadow formation
around the fingertips. The DPM model requires prior training
of the images to launch it. A similar attack that recovers the
text typed by the user utilizing the reflections is presented by
Ye et al. [54]. Raguram et al. [55] and Backes et al. [56] uti-
lized the captured reflections to reconstruct the typed text. In
their work, Xu et al. [57] demonstrated that their attack model
could detect the keystroke inputs by exploiting repeated reflec-
tions in the user’s eyeball. These attacks cannot be extended
to VR devices because reflections in the eyeball cannot be
observed by an adversary while the user wears Head Mounted
Displays (HMD) devices.

Microphone and motion-sensors based attack. PIN Skimmer
presented by Simon et al. [58] infers user-typed pins on a
smartphone by making use of video recordings and accessing
the microphone data. A Trojan application for the Android
platform, TapLogger [59] predicts the password and numbers
entered during a phone call. [2, 44, 60–65] are some of the
other motion-based attacks for predicting the characters
typed by users on non-XR devices.

Existing Work vs the HR Attack Model.
The related work requires (i) model training for the target
user, (ii) motion sensors or microphone data, (iii) specially
designed hardware components, or the installation of software
in the target user’s devices. The aforementioned models are
designed for a specific attack scenario where the user just
enters a pin, password, or text.

Hidden Reality model utilizes only the spatiotemporal dy-
namics of the target user’s visible hand gestures captured
from video clips to infer the text typed by the user. HR model
exposes serious security threats in various key entry scenar-
ios: (1) pin entry process, (2) alphanumeric password entry
process, (3) graphical pattern lock input, (4) email entry, and
(5) surfing or text entry on the browser. Our model does not
need specific model training for the target user.

9 Conclusions

In this paper, we introduced a novel video-based side-channel
attack, Hidden Reality, to immersive environments. The Hid-
den Reality attack6 model does not require any additional
information from the user’s screen display and relies only on
the spatio-temporal dynamics of the target user’s hand ges-
tures. Also, our model does not require specific training for
a targeted user to launch the attack. Very high success rates
of our attack model expose a serious security threat as the
attacks such as ours can easily be launched without raising
any suspicion by the user. Our user survey study shows that
VR users have very limited awareness of the real world while
they are immersed in virtual reality (VR). Hence, a person
with malicious intent can easily obtain video footage of the
targeted user’s hand movements. In addition, our user study
also indicates that pins, passwords, and graphical patterns
locks are still a preferred authentication mechanism for many
users.

Attack models such as Hidden Reality challenges the users’
false perception of security and uncovers a serious security
threat to their digital footprints. With the increased use of VR
devices for performing private and sensitive transactions, this
paper argues in support of the need for more stringent defen-
sive mechanisms to protect the users’ security and privacy.
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Appendices

A User Study Questionnaire

Post completion of the data collection activity for both the
recording sessions, the volunteer participants were asked to
fill in a user survey on their behavior and perception of the
security of VR devices. The survey questionnaire was shared
with volunteer participants through a Google forms link in
their email. The purpose of this study was to understand
users’ behavior and perceptions of the security related to VR
devices. Table 3 presents a detailed list of questions asked to
the participants in our user perception study.

Table 3: User Study Questionnaire on Security and Privacy of
VR Devices.

# Survey Questions
1 How often do you use a VR device?

2

Which input method do you prefer to use when typing on a VR device?
Controller (using hand controller to click and type) (or) Hand tracking
(locating the characters using fingertips and pinching to type).
This was the method used in our experiments.

3 In your opinion, what type of authentication system is most
secure for a VR device?

4 Are you comfortable using a shared VR device or sharing
your own VR device with friends and family ?

5
Would you be comfortable making financial transactions using
a VR device, such as ordering food, buying products on Amazon,
sending money through google pay, facebook pay, etc. ?

6 I am aware of what is happening around me in the real world when
I wear a VR headset

7
Are you aware that a VR device can be subjected to a digital attack
known as data theft? Data theft is an act of adversaries to gain access
to the users’ private and sensitive information.

8 Rate your overall experience with our data collection experiments.

B Attack Performance with Varying Record-
ing Distances and Recording Angles

Experiment Design – To analyze the effect of recording
distances and recording angles on the attack performance for

password cracking, we recruited eight volunteer participants.
We collected additional video clips from three different
recording distances (viz. 3 m, 4.5 m, and 6 m) constituting
a total of 24 video clips. To analyze the effect of recording
angle, we collected data from seven7 volunteer participants
from five different recording angles (viz. -105 degrees, -60
degrees, 0 degrees, 60 degrees, and 105 degrees) constituting
a total of 35 videos. Since the Samsung S20 smartphone
camera was not able to capture visible hand gestures from
a recording distance longer than 4 meters, we used Nikon
D3400 camera with an optical lens for videotaping in these
experiments. We kept the optical zoom setting of the Nikon
camera to 1X and also kept other parameters fixed to capture
hand movements from various distances and angles. 0 degree
signifies the recording captured from the front of the user
where the attacker and the user face each other. The negative
angle represents the left side of the user at the respective
angle value while the positive angle denotes the angle on the
right side of the user. We kept the recording distance fixed
at 3m while varying the recording angle. Similarly, we kept
the recording angle at 0 degrees while varying the recording
distance.

(a) Attack performance for
videos captured from differ-
ent recording distances.

(b) Attack performance for
videos captured from differ-
ent recording angles.

Figure 13: The effect of recording distances and recording
angles on the attack performance. Figure 13a shows that the
increase in recording distance decreases the performance of
the attack model. However, an adversary who utilizes a cam-
era with the optical zoom feature will still be able to achieve
good attack performance as shown for prediction performance
from a recording distance of 7.5 m using 2.5X optical zoom.
In Figure 13b, 0 degrees signifies that the user and the attacker
are facing each other. A negative angle represents that the
videos were recorded from the left side of the user while a
positive angle means the videotaping is performed from the
right side of the user at the respective angles.

Attack Performance with Recording Distance – We evalu-
ated the performance of the HR attack model on the video
recordings captured from various distances. Figure 13a

7One of the recruited volunteer participants did not return to participate
in the data collection for the recording angle experiment.
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password cracking, we recruited eight volunteer participants.
We collected additional video clips from three different
recording distances (viz. 3 m, 4.5 m, and 6 m) constituting
a total of 24 video clips. To analyze the effect of recording
angle, we collected data from seven, volunteer participants
from five different recording angles (viz. -105 degrees, -60
degrees, O degrees, 60 degrees, and 105 degrees) constituting
a total of 35 videos. Since the Samsung S20 smartphone
camera was not able to capture visible hand gestures from
a recording distance longer than 4 meters, we used Nikon
D3400 camera with an optical lens for videotaping in these
experiments. We kept the optical zoom setting of the Nikon
camera to IX and also kept other parameters fixed to capture
hand movements from various distances and angles. O degree
signifies the recording captured from the front of the user
where the attacker and the user face each other. The negative
angle represents the left side of the user at the respective
angle value while the positive angle denotes the angle on the
right side of the user. We kept the recording distance fixed
at 3m while varying the recording angle. Similarly, we kept
the recording angle at O degrees while varying the recording
distance.

are

Appendices

A User Study Questionnaire

Post completion of the data collection activity for both the
recording sessions, the volunteer participants were asked to
fill in a user survey on their behavior and perception of the
security of VR devices. The survey questionnaire was shared
with volunteer participants through a Google fornis link in
their email. The purpose of this study was to understand
users, behavior and perceptions of the security related to VR
devices. Table _ presents a detailed list of questions asked to
the participants in our user perception study.

Table 3: User Study Questionnaire on Security and Privacy of
VR Devices. (a) Attack performance for (b) Attack performance for

videos captured from differ- videos captured from differ-
ent recording distances. ent recording angles.

Survey Questions
How often do you use a VR device?
Which input method do you prefer to use when typing on a VR device?
Controller (using hand controller to click and type) (or) Hand tracking
(locating the characfrrs using fingertips and pinching to type).
This was the method used in our experiments.
In your opinion, what type of authentication system is most
secure for a VR device?
Are you comfortable using a shared VR device or sharing
your own VR device with friends and family .
Would you be comfortable making financial transactions using
a VR device, such as ordering food, buying products on Amazon,
sending money through google pay, facebook pay, etc. ?
I am aware of what is happening around me in the real world when
I wear a VR headset
Are you aware that a VR device can be subjected to a digital attack
known as data theft? Data theft is an act of adversaries to gain access
to the users, private and sensitive inforniation.
Rate your overall experience with our data collection experiments.

Figure 13: The effect of recording distances and recording
angles on the attack perfornlance. Figure 13a shows that the
increase in recording distance decreases the perforniance of
the attack model. However, an adversary who utilizes a cam-
era with the optical zoom feature will still be able to achieve
good attack perforniance as shown for prediction perforniance
from a recording distance of 7.5 m using 2.5X optical zoom.
In Figure 13b, O degrees signifies that the user and the attacker
are facing each other. A negative angle represents that the
videos were recorded from the left side of the user while a
positive angle means the videotaping is perfornied from the
right side of the user at the respective angles.

Attack Performance with Recording Distance - We evalu-
ated the perforniance of the HR attack model on the video
recordings captured from various distances. Figure 13aB Attack Performance with Varying Record-

ing Distances and Recording Angles
One of the recruited volunteer participants did not return to participate

in the data collection for the recording angle experiment.Experiment Design- To analyze the effect of recording
distances and recording angles on the attack perforniance for

https: //pypi.org/pro ject/

https: //www. kaggle. com/datasets/wjburns/
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presents the average attack performance at different record-
ing distances. The evaluation results show that the attack
performance decreases by increasing the camera-to-device
recording distance. We believe that the attack performance
decreases due to the reduced size of hand gestures in the video
clip which makes it difficult for the model to detect click (or
pinch) gestures.

We also recorded eight videos from a recording distance of
7.5 m with 2.5x optical zoom using a Nikon D3400 camera
to evaluate the attack performance from a longer recording
distance while utilizing the optical zoom feature. This is to
simulate the scenario of an adversary that uses a high-end
camera with an optical zoom to attack a targeted user from a
long distance without raising suspicion. Figure 13a shows
that the average character inference performance increases
if an attacker uses a camera with optical zoom capability
when capturing the hand movements from a longer recording
distance. This is due to the increase in the visibility of the
targeted user’s hand gestures.

Attack Performance with Recording Angle – We evalu-
ated the attack performance from different recording angles
using 35 videos captured from different angles as discussed
under Experiment Design. Figure 13b shows the average
performance at different recording angles. As shown in the
Figure, the HR attack model could achieve significantly
high inference accuracy using videos captured from the left
side of the user. The HR model recorded a comparatively
low prediction accuracy for the videos recorded from the
right side of the user. We observed that this is because
knuckles/parts of other fingers partly obscured the visibility
of the index and the thumb anchor points required to detect
click gestures.

C End-to-end Performance Evaluation of the
HR Attack on Password Typing

We conducted an end-to-end attack evaluation for the
password-cracking scenario by utilizing the deciphered
characters from the top 5 predictions of the HR model. Here,
we evaluate the performance of the attack model for complete
password prediction.

Candidate Passwords Generation – For this, we used
the following procedure.

1. We first applied our HR attack model to the recorded
video. The password inferred by the HR attack model
was considered the first candidate password.

2. The attack model then finds the character that has the
highest probability of getting confused with their adja-
cent keys. This was detected by checking the distance of
the predicted point from the predicted key center on the
projected keypad (see Section 3.1.4). We generated the

next four candidate passwords by replacing the most con-
fused inferred keys with the closest adjacent key. This
gave us our top five password guesses.

3. We then used a dictionary model [66] that uses a leaked
passwords dataset [67]. We used this model with input as
– (i) the first guess to generate 6th, 7th, and 8th candidate
passwords, (ii) the second guess obtained in Step 2 to
generate 9th, 10th, and 11th candidate passwords, (iii)
the third guess to generate 12th, 13th, and 14th candidate
passwords, (iv) the fourth guess to generate 15th, 16th,
and 17th candidate passwords, and (v) the fifth generated
password in Step 2 was used to predict 18th, 19th, and
20th guesses. The reason we used each of the guessed
passwords generated in Step 2 as input for the password
dictionary model is that the top five generated passwords
are roughly equally correct. The HR model only replaces
the most confused key with its closest adjacent key one
at a time to generate a new guess.

End-to-end Password Inference Performance – We gener-
ated the top 5, top 10, top 15, and top 20 guesses using the
candidate password generation procedure. The evaluation re-
sults show that the HR attack model could break ⇡ 23% of
the passwords in the top 20 guesses (see Table 4). The pass-
words typed in our experiments were computer-generated
random passwords, whereas, the users generally use easier
passwords that they can remember and type every time to
access their device [68, 69]. Our experiment analysis shows
that the available leaked password datasets typically utilized
to learn relationships and patterns of passwords do not gener-
alize well to completely random passwords, resulting in low
end-to-end password cracking performance. We believe that
the password prediction performance will only improve with
actual user passwords.

Another source of error in password prediction is due to the
missed/extra clicks detected by the HR model (see Section
7). We noticed that the candidate password generation mecha-
nism using the leaked password dataset is not very effective
in correcting missed/extra clicks for random passwords. How-
ever, using the HR model with multiple videos of password
typing, and using the fused decision to detect clicks would
help accurately locate actual clicks by the user. Moreover,
using the leaked passwords-based candidate password gener-
ation mechanism on the clicks detected from fused decisions
would improve the end-to-end attack performance on actual
passwords.

Table 4: The end-to-end accuracy of the top 5, top 10, top 15,
and top 20 guesses for the password-cracking scenario.

End-to-end Password Level Inference Performance
Top n Guesses 5 10 15 20

Average Inference Accuracy 0 % 9.0% 18.2% 22.7%

presents the average attack perforniance at different record-
ing distances. The evaluation results show that the attack
perforniance decreases by increasing the camera-to-device
recording distance. We believe that the attack perforniance
decreases due to the reduced size ofhand gestures in the video
clip which makes it difficult for the model to detect click (or
pinch) gestures.

We also recorded eight videos from a recording distance of
7.5 m with 2.5x optical zoom using a Nikon D3400 camera
to evaluate the attack perforniance from a longer recording
distance while utilizing the optical zoom feature. This is to
simulate the scenario of an adversary that uses a high-end
camera with an optical zoom to attack a targeted user from a
long distance without raising suspicion. Figure 13a shows
that the average character inference perforniance increases
if an attacker uses a camera with optical zoom capability
when capturing the hand movements from a longer recording
distance. This is due to the increase in the visibility of the
targeted user's hand gestures.

next four candidate passwords by replacing the most con-
fused inferred keys with the closest adjacent key. This
gave us our top five password guesses.

3. We then used a dictionary model [66] that uses a leaked
passwords dataset [67]. We used this model with input as
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passwords, (li) the second guess obtained in Step 2 to
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th20 guesses. The reason we used each of the guessed

passwords generated in Step 2 as input for the password
dictionary model is that the top five generated passwords
are roughly equally correct. The HR model only replaces
the most confused key with its closest adjacent key one
at a time to generate a new guess.

Attack Performance with Recording Angle -
ated the attack perforniance from different recording angles
using 35 videos captured from different angles as discussed
under Experiment Design. Figure l3b shows the average
perforniance at different recording angles. As shown in the
Figure, the HR attack model could achieve significantly
high inference accuracy using videos captured from the left
side of the user. The HR model recorded a comparatively
low prediction accuracy for the videos recorded from the
right side of the user. We observed that this is because
knuckles/parts of other fingers partly obscured the visibility
of the index and the thumb anchor points required to detect
click gestures.

End-to-end Password Inference Performance - We gener-
ated the top 5, top 10, top 15, and top 20 guesses using the
candidate password generation procedure. The evaluation re-
sults show that the HR attack model could break = 23 % of
the passwords in the top 20 guesses (see Table 4). The pass-
words typed in our experiments were computer-generated
random passwords, whereas, the users generally use easier
passwords that they can remember and type every time to
access their device [68, 69]. Our experiment analysis shows
that the available leaked password datasets typically utilized
to learn relationships and patterns of passwords do not gener-
alize well to completely random passwords, resulting in low
end-to-end password cracking perforn]ance. We believe that
the password prediction perforniance will only improve with
actual user passwords.

Another source of error in password prediction is due to the
missed/extra clicks detected by the HR model (see Section
7). We noticed that the candidate password generation mecha-
nism using the leaked password dataset is not very effective
in correcting missed/extra clicks for random passwords. How-
ever, using the HR model with multiple videos of password
typing, and using the fused decision to detect clicks would
help accurately locate actual clicks by the user. Moreover,
using the leaked passwords-based candidate password gener-
ation mechanism on the clicks detected from fused decisions
would improve the end-to-end attack perfornlance on actual
passwords.

C End-to-end Performance Evaluation of the
HR Attack on Password Typing

We conducted an end-to-end attack evaluation for the
password-cracking scenario by utilizing the deciphered
characters from the top 5 predictions of the HR model. Here,
we evaluate the perforniance of the attack model for complete
password prediction.

Candidate Passwords Generation -
the following procedure.

l. We first applied our HR attack model to the recorded
video. The password inferred by the HR attack model
was considered the first candidate password.

2. The attack model then finds the character that has the
highest probability of getting confused with their adja-
cent keys. This was detected by checking the distance of
the predicted point from the predicted key center on the
projected keypad (see Section J. 1.4). We generated the

For this, we used

Table 4: The end-to-end accuracy of the top 5, top l O, top 15,
and top 20 guesses for the password-cracking scenario.

End-to-end Password Level Inference Perforniance
Top n Guesses 15

Average Inference Accuracy 18.2%
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