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Abstract. In this work, we present an efficient secure multi-party com-
putation MPC protocol that provides strong security guarantees in set-
tings where potentially a majority of the participants may be malicious
and behave arbitrarily. Our protocol achieves both complete identifia-
bility and robustness. With complete identifiability, honest parties can
detect and unanimously agree on the identity of any malicious party.
Robustness allows the protocol to continue with the computation with-
out requiring a restart, even when malicious behavior is detected. Addi-
tionally, our approach addresses the performance limitations observed in
MPC protocols which also achieve strong security properties.
Finally, we benchmark our protocol on a ML-as-a-service scenario, wherein
clients off-load the desired computation to the servers, and verify the
computation result. Our benchmarking focuses on linear ML inference,
running on various datasets.

Keywords: Secure Multi-Party Computation · Robustness and Public
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1 Introduction

Outsourcing computation to cloud servers has become an invaluable practice in
today’s digital landscape. By off-loading intensive computational tasks to remote
data centers, clients gain a cost-effective solution that eliminates the need for
significant investment in hardware and software infrastructure. Instead, they can
leverage the vast, on-demand computing power of the cloud to scale resources as
needed. This flexibility reduces initial capital expenses and enhances operational
efficiency.

While outsourcing to the cloud offers numerous advantages, it also introduces
significant security challenges. Cloud-hosted data and applications are suscep-
tible to risks such as data breaches, unauthorized access, and service outages.
⋆ The full version of this appears in the Cryptology ePrint Archive [28]. This work

was supported by AFRL/RI contract number FA8750-22-2-0267.
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Ensuring data privacy and regulatory compliance becomes more complex when
data resides on remote servers. In this work, we focus on safeguarding client data
privacy of outsourced computations.

Secure multi-party computation (MPC) [3, 6, 16, 30] is a powerful tool for
enhancing the security of outsourced cloud computing. MPC enables multiple
parties to jointly compute a function over their inputs while ensuring data confi-
dentiality. This approach allows clients to securely delegate computational tasks
to the cloud, protecting sensitive information from potential exposure. As a cryp-
tographic technique, MPC is essential for mitigating the security risks associated
with cloud outsourcing, by utilizing multiple service providers. However, existing
MPC protocols have certain drawbacks—some lack efficiency, while others fall
short in providing robust security guarantees.

In this paper we are interested in guaranteeing security even in the presence
of a dishonest majority of service providers. In such a setting—MPC with a
dishonest majority—protocols can be categorized into two main types:

Protocols with common security guarantees, exemplified by efficient and
widely deployed solutions like SPDZ [13]. These protocols offer security with
abort, meaning that if misbehavior by a party is detected, the protocol exe-
cution is aborted. This is due to their utilization of an homomorphic MAC,
which merely enables them to detect when malicious behavior happens, but
not the misbehaving actor. As a result, the computation may fail to com-
plete successfully.
Stronger security guarantees, such as robustness, which guarantees that ma-
licious parties cannot prevent the honest parties from obtaining the output
of the computation, as well as (complete) identification of the misbehaving
parties. As shown in [11], the latter can be achieved at the expense of effi-
ciency (due to the utilization of DLOG-based commitments), or by more
sophisticated, lattice-based cryptographic methods [26].

1.1 Our Contributions

In this work we enhance the approach in [26] by introducing an additional entity,
namely, a semi-honest trusted third party (STTP, which can be the client) to
achieve robustness for a number of corruptions of up to n− 2 parties.3

In [26], a tradeoff is made between privacy and robustness. With threshold t
used to reconstruct shares, their protocol fails to provide robustness if there are
more than n− t malicious parties, and fails to provide privacy if there are more
than t malicious parties. In contrast, our protocol achieves privacy if there is at
least one honest party, and achieves robustness when there are at least 2 honest

3 Regarding the reason for dissimilar thresholds—i.e., n− 2 vs. n− 1—with a trusted
dealer, we can identify every malicious server and open its share to the other servers.
However, if we identify n− 1 malicious servers and open their shares, it would lead
to the only remaining server being able to combine the n− 1 servers’ shares and its
own share to recover the input. This is a situation we wish to avoid; therefore, we
“degrade” our guarantees to security with abort.
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party. Moreover, our protocol does not need to restart the circuit evaluation
when malicious behaviors are detected, which we achieve by means of homo-
morphic encryption. Further, we propose an optimistic approach: If there is no
malicious behavior, then the recovery process involving the STTP and “heavy”
cryptographic primitives (such as homomorphic encryption) do not need to be
executed. We showcase the performance of our protocol by benchmarking it on
a modified neural network Network-A [18, 23, 26], which consists of a sequence
of dense and square layers. In more detail, a neuron in the dense layer includes a
weighted sum of all previous layers (or the input in case of the first layer), and it
captures how much influence of each value from previous layers should be con-
sidered (in other word, we modify the non-linear layer in Network A to square
operations, just as in [26]). On the other hand, the square layer adds non-linearity
to the output of the dense layer. Our implementation only supports linear op-
eration, therefore, for multiplications, we utilize Beaver triples [2]. Further, we
benchmark our protocol on a concrete linear ML application.

Our MPC protocol operates over polynomial rings, batch processing of mul-
tiple inputs is inherently enabled, as these rings can be decomposed into multiple
slots, with each slot encoding an input (cf. [15]).

1.2 Related Work

Our work ensures public verifiability, complete identifiability, and robustness in
the presence of a dishonest majority. Related works along the SPDZ line of work
(e.g., [13,18–20]), improve the efficiency of the online/offline computation phase,
while still only achieving security with abort.

Other related work, such as [27] also utilize a bulletin board, enabling public
verifiability. Third parties use the information published on the bulletin board
to verify the correctness of the computation.

Regarding security with identifiable abort, there are also works that enable
honest parties to detect malicious behavior and identify the corresponding par-
ties, such as [26]. The protocol in [26], however, only provides robustness when
there is an honest majority; otherwise, privacy will be violated. In contrast, by
adding an STTP, our protocol provides robustness even under a dishonest ma-
jority and enables honest parties to recover shares held by the malicious party
without having to restart the protocol.

In addition, the presence of an STTP allows us to achieve fairness even in the
presence of a dishonest majority. Specifically, if a malicious party refuses to open
its secret share, the STTP and an arbitrary honest party can pool their shares
and reconstruct it. Thus, a dishonest party cannot abort with an advantage. In
contrast, if in the protocol in [26] there is a dishonest majority, those parties can
learn the secret share themselves and from that point on refuse to participate in
the protocol.

Similarly, the protocol in [12] also relies on a trusted party to achieve robust-
ness without sacrificing privacy. However, their protocol assumes that only 1 out
of the 4 servers is malicious.
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Finally, the protocol in [7] also recovers from faulty behavior without restart-
ing. That protocol, however, consists of multiple committees, which is a setting
incomparable to ours; moreover, it requires an honest majority for all commit-
tees.

2 Preliminaries

2.1 System Model

As it is customary, we model protocol participants as probabilistic polynomial-
time Turing machines (ITMs) and consider the client-server model of compu-
tation with an STTP. We assume a point-to-point synchronous communication
network, a public-key infrastructure (PKI), and a bulletin board (for simplicity,
as it can be realized from the PKI). Table 1 summarizes the notation used in our
protocol descriptions. In our setting, the STTP is assumed to be semi-honest

Table 1. Summary of notation used in the paper.

Symbols Definition
C A set of clients {C1, ..., Cm}
S A set of servers {S1, ..., Sn}
STTP Semi-honest trusted third party
B Bulletin board (broadcast channel)
[x] Secret share of value x (e.g., a client’s input)
P Prover in ZK proof (e.g., Σ protocol)
V Verifier in ZK proof

and to not collude with any of the servers. As for the malicious servers, once
they are detected, they are removed from the computation.

2.2 Building Blocks

MPC. In secure multi-party computation (MPC) [3,16,31], n parties hold input
x1, ..., xn respectively, aiming to compute a given function f(x1, ..., xn) privately
and correctly. Below we list the basic security properties for MPC.

Privacy: The parties’ inputs remain private.
Security with abort: All honest parties agree on abort.
Robustness: The protocol always outputs a correct result regardless of the
adversary A’s behavior (also called guaranteed output delivery) (cf. [10,25]).
Complete identifiability: When a corrupted party misbehaves, honest parties
always identify and agree on the identities of the misbehaving party

Commitments. We define the commitment operation as Comm(x, r), where com-
mitter commits to a message x where r is the randomness used in the commit-
ment (r also acts as part of the decommitment in the opening phase). The
interface for the verification operation is given by Ver(Comm, x, r), where the
verifier takes a commitment and checks if it is consistent with the committed
message x and the decommitment r. The two basic properties of a commitment
scheme are as follows (cf. [17]):
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Hiding: Comm(x, r) leaks no trival info of x. An adversary A breaks hiding
iff with non-negl probability
1. Parameters params← Gen(1n) are generated.
2. The adversary A is given input params, and outputs a pair of messages

m0,m1 ∈ {0, 1}n.
3. A uniform b ∈ {0, 1} is chosen, and com← Com(mb, r) is computed.
4. The adversary A is given com and outputs a bit b′.
5. The output of the experiment is 1 if and only if b′ = b.

Binding: An adversary A cannot open Comm(x, r) to x′, except with neg-
ligible probability. A breaks binding iff with non-negl probability
1. Parameters params← Gen(1n) are generated.
2. A is given input params and outputs (comm,m, r,m0, r0).
3. The output of the experiment is defined to be 1 iff m ̸= m0 and Comm(m, r) =

comm = Comm(m0, r0).

In order to provide complete identifiability in our MPC scheme, committed val-
ues need to be updated as the computation proceeds. The opening server com-
putes its share x to x

′
and opens it to the receiving server. With the homomorphic

property, the receiving server updates the commitment Comm(x) to Comm(x
′
),

then uses Comm(x
′
) to authenticate x

′
. By the binding property of the com-

mitment, the authentication succeeds if and only if x
′

is correct. As such, we
will require the commitment scheme to be linearly homomorphically updateable,
satisfying the following properties:

Comm(x1, r1) + Comm(x2, r2) = Comm(x1 + x2, r1 + r2)

Comm(x1, r1) + c = Comm(x1 + c, r1)

Comm(x1, r1) ∗ c = Comm(cx1, cr1)

Further, for efficiency reasons, we will be employing homomorphic lattice-
based commitments [26]. Such commitments can (and will) be used to authen-
ticate messages, in particular during the course of the computation server Si

opens a message to other servers S\Si; if Si cheats, its misbehavior is identified.
With the binding property, the cheating server can not be opened to a different
message without getting detected.

With the homomorphic property, a server Si can update a commitment lo-
cally to any layer of the computation circuit. Thus, when another server intends
to open its share, the server Si holds the commitment at the same circuit layer
as the layer of opening. Further, due to the binding property, the decommitment
verification passes if and only if the opened share is correct. Lattice-based com-
mitments require only simple operations, such as multiplication and addition,
whereas discrete log-based commitments involve costly exponentiation.

Σ protocols. This building block, proposed by Cramer et al. [9], can be used to
provide a ZK proof that both a given encryption and a Pedersen commitment
correspond to the same value, say, x, without revealing x.

Σ-protocols can be realized based on lattices [21, 22]. Please refer to those
papers of Σ protocol for lattice-based signatures (with a similar approach for
commitments) and it achieves non-interactivity via the Fiat-Shamir heuristic
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(cf. [21]). [26] shows that simulation proof can be constructed by allowing the
simulator to generate a “fake” ZK proof, assuming a programmable random
oracle (RO).

Homomorphic encryption. To provide the robustness property in our MPC
scheme, we require encryption to be homomorphic, so that the encryption can
be updated along with the computation of the circuit:

Enc(x1) + Enc(x2) = Enc(x1 + x2)

Enc(x1) + c = Enc(x1 + c)

Enc(x1) · c = Enc(cx1)

BGV encryption. BGV encryption [4] is a fully homomorphic encryption scheme
We also utilize the distributed decryption approach from [26] (see the full version
for details [28].)4

3 Robust and Verifiable MPC

In this section, we first describe the relevant ideal functionalities and then de-
scribe how our protocol securely realizes these functionalities following the sim-
ulation paradigm (cf. [5]).

3.1 Ideal Functionalities

The ideal functionality for MPC is depicted (in the dishonest majority setting)
in Fig. 1. Each party Pi provides its input ini for circuit C, then obtains output
OUT = C(in0, in1, ..., inn−1). Fig. 2 depicts the ideal functionality for MPC with
completely identifiable abort (Ff

CIDA-MPC); when malicious behavior is detected,
the functionality will abort and output the identity of the misbehaving party.
Combining the Ff

CIDA-MPC approach with a “trusted dealer,” robustness can be
achieved for a number of corruptions of up to n − 2 parties. (For the reason
for dissimilar thresholds (i.e., n − 2 vs. n − 1) please refer to Section 1.1.) The
functionality Ff

CIDA-RV-MPC for robust MPC with public verifiability is shown in
Fig. 3.

3.2 Protocol Description

At a high level, the protocol consists of an offline phase and an online phase.
In the offline phase, the client generates commitment and encryption parame-
ters (including commitment’s public parameters and encryption’s public/private
4 We remark that we do not utilize additively homomorphic encryption such as Pail-

lier’s [24] because our lattice-based commitment scheme works on polynomial rings,
and therefore Paillier’s is not compatible. Further, we do not utilize a leveled BGV
implementation since the ciphertexts are generated by the client and given to the
online servers. Having the online servers themselves reduce the ciphertext error does
not seem straightforward, and we leave it for future work.
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Functionality Ff
MPC

INIT: On input (init, Cf , p) from all parties (where Cf is a circuit with n inputs
and one output computing f , consisting of addition and multiplication gates over
Zp)
1. Store Cf and p

2. Wait for A to provide the set I of adversarially controlled party indices

3. Store OUT := ⊥
INPUT: On input (input, Pi, ini), store (INPUT, Pi, ini)
EVAL: On input (eval) from all parties:
1. If not all input values have been provided, output REJECT

2. Evaluate the circuit Cf on inputs (in1, ..., inn). When the evaluation is com-
pleted, store the resulting value as OUT

OUTPUT: On input (output) from all parties:
1. Send (output-result,OUT) to all parties Pi

Fig. 1. The ideal functionality for secure multi-party computation (MPC).

keys) and hands them to the STTPs. Next, the client and STTP collaboratively
generate input shares, along with the corresponding commitments and homo-
morphic encryptions. The objective is to ensure that the STTP does not possess
all the input shares and their associated encryptions, but instead holds only the
commitments to the input shares. After that, shares, commitments, and encryp-
tions are distributed to the corresponding server. We call our protocol ΠRV-MPC,
which is split into two parts: offline and online.

In the online phase, the servers are responsible for carrying out the computa-
tion. If a malicious behavior is detected by any of the servers, the server makes
an accusation to STTP. STTP uses the commitment to validate the accusation;
if the accusation is valid, STTP broadcasts the encryption’s secret key of the
accused server. Next, all the servers use the received secret key to recover the
malicious share held by the accused server. We now turn to a more detailed
specification of the protocol.

Offline phase. As previously noted, the offline protocol is to compute the ran-
domness utilized in the online phase, such as Beaver triples. In this phase, ran-
dom elements rs are generated, to be used in masking inputs and distributing
input shares accordingly. We note that we can also have the clients generate the
public and secret key pair (pki, ski), hand ski to online si and also to STTP
(to enable recovering in the online phase), for all i, and broadcast pki, and then
have the online servers run the offline protocol from [26]. However, by letting
the clients directly generate the secret shares and authentication data, the con-
struction is simpler.

This approach simplifies security by leveraging the semi-honest assumption
for STTPs and the clients, as our setting does not incur the additional com-
plexity required in [26]. Our offline protocol simply has the clients generate the
homomorphic ciphertexts, commitments and secret shares, and hand them over



Approved for Public Release on 13 Feb 2025. Distribution Is Unlimited; Case Number: 2025-0053 (original case number(s): AFRL-2025-0310)

8 Authors Suppressed Due to Excessive Length

Functionality Ff
CIDA-MPC

INIT: Same as Ff
MPC. In addition, receive and record the identity of trusted client

C. Set Lcheat := ∅.

INPUT, EVAL: Same as Ff
MPC.

OUTPUT: On input (output) from all parties:
1. Send (output-result,OUT) to all adversarially controlled parties Pi ∈ I.

2. Run ABORT, waiting for each adversarially controlled party to send either
(abort,ACCEPT) or (abort,ABORT).

3. Send (output-result,OUT, Lcheat) to all parties, where OUT may now be ⊥
ABORT : On input (abort, xi) from an adversarial server Si

1. Lcheat := Lcheat ∪ Si

2. Set OUT := ⊥

Fig. 2. Ideal functionality for MPC with completely identifiable abort.

to the corresponding party. Due to space limitations, details are presented in the
full version [28].

Online phase. The online protocol comprises a set of servers S carrying out
a computation without leaking the input to any of them. CESS stands for
commitment-enhanced secret sharing, and was introduced in [11]. Its objective
is to realize, in dishonest majority settings, completely identifiable abort, mean-
ing that all parties that misbehave are flagged as malicious. In order to make a
CESS-type protocol practical, Rivinius et al. [26] proposed a lattice-based com-
mitment scheme, which only takes approximately 20x time as MP-SPDZ [13]
when there are 2 servers, whereas the approach in [11] using Pedersen commit-
ment would be roughly 800x. The protocol in [26] completely identifiability, and
combining [26] with a STTP, robustness can be achieved for a number of corrup-
tions of up to n− 2 parties. For the reason for dissimilar thresholds (i.e., n− 2
vs. n− 1) please refer to Section 1.1

The input secret-sharing phase allows the client to secret-share its input
and broadcast the commitment and encryption of all inputs to the computation
parties. The robust protocol’s precondition is as follows: For each client input x,
each server Si holds ([x]i, ri, Comm(x1),. . . ,Comm(xn), Enc(x1),. . . , Enc(xn)).
The semi-trusted third party (STTP) holds all commitments and the secret keys.
Additionally, each Si holds the Beaver triples received from the offline phase as
well as the commitments of all Beaver triple shares. We describe our protocol,
which achieves robustness up to n− 2 malicious parties in Fig. 4. Our protocol
achieves a stronger security property than protocols in [11,26], which only achieve
completely identifiable abort in the dishonest majority setting. Regarding the
STTP, we argue that since it is semi-honest and non-colluding, then holding the
secret keys without the ciphertexts does not violate privacy.

Next, we describe the optimized commitment opening protocol presented
in [26]. When opening a commitment, it is intuitive to just decommit (i.e., di-
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Functionality Ff
CIDA-RV-MPC

INIT: Same as Ff
CIDA-MPC, additionally receive and record the identity of trusted

client T . Set Lcheat = ∅
INPUT: Same as Ff

CIDA-MPC

EVAL: On input (eval) from all parties:
1. If (eval) messages are not provided by more than n− 2 parties, output RE-

JECT

2. If (eval) is not provided by party Pi, wait for (recover) from STTP

3. Evaluate the circuit Cf on inputs (in1, ..., inn). When the evaluation is com-
pleted, store the resulting value as OUT

OUTPUT: Same as Ff
CIDA-MPC

ABORT : On input (abort, xi) from an adversarial server Si

1. Add Si to Lcheat

2. If |Lcheat| ≥ n− 1, set OUT = ⊥; else, wait for (recover) from STTP
AUDIT CESS: On input (audit-CESS) from (audited-CESS), output
(audited-CESS, Lcheat)

Fig. 3. Ideal functionality for robust MPC with completely identifiable abort and public
verifiability, run by the computing parties in the dishonest majority setting and a semi-
honest STTP.

rectly send the committed message and the randomness that generates the com-
mitment). However, directly decommitting will require the commitment scheme
to be equivocal in order to prove simulation-based security [11].

The equivocation property enabled the simulator to open to any message
but leads to larger parameters and worse efficiency. To get rid of the neces-
sity of equivocation properties of the commitment scheme, the authors in [26]
introduced a new commitment opening protocol: The sender makes a new com-
mitment, committing to the same message as the original commitment. Then the
sender proves in zero-knowledge that the new and original commitment commit
to the same message. The opening protocol in [26] only requires a programmable
RO instead of an equivocal commitment. As a result, without the equivocation
property, the parameters of the commitment can be much smaller, leading to
improved efficiency. For more details, refer to [26].

We are able to show:

Theorem 1. ΠRV−MPC realizes Ff
CIDA-RV-MPC in the (FPKI,FCRS)-hybrid model.

Due to space limitations, the proof of the theorem can be found in the full
version [28].
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Protocol Πon
RV-MPC

Input secret sharing: Client C intends to distribute input x. The simplest way
is for C to generate randomness r in the offline protocol and compute secret shares.
Then C chooses parameters for the homomorphic encryption, computes the homo-
morphic encryptions and lattice-based commitments, broadcasts the lattice-based
commitments, sends the homomorphic encryptions to all the servers, sends each
share to the corresponding server, and sends the decryption keys of the homomor-
phic encryption to the online STTP that monitors the online computation.
1. C creates a share x1j = x − r + r1j, and xk = rk where rx =

∑
rxj and

1 ≤ j ≤ n, 2 ≤ k ≤ n (n is the number of servers)

2. C computes and broadcasts Enc(skj , xj)

3. C computes and broadcasts Comm(xj)

4. C sends skj to the online STTP

Preconditions:
Let xj denote the share held by server Sj
All servers and the STTP hold Comm(xi), 1 ≤ i ≤ n.
All servers hold Enc(xi) and Enc(ri), 1 ≤ i ≤ n.

Online computation:
1. All servers update Enc(xi) and Enc(ri) as the computation proceeds; denote

the updated ciphertexts as Enc(x′
i),Enc(r′i).

2. When Sk is identified as malicious, STTP broadcasts Sk’s decryption key.
The other servers decrypt Enc(x′

k),Enc(r′k), and obtain and x′
k, r

′
k.

3. To recover the computation from failure, a designated server (e.g. S0), adds
xk to its share (e.g., x′

1 = x1 + xk). Since xk is a now a constant, all parties
can locally update Comm(x1) and Enc(x1) by the homomorphic property of
the commitment and encryption schemes.

4. All servers send all x′
k and r′k of the malicious server to STTP. Denote by

(x′
k, r

′
k) sent from server Si as (x′

ki, r
′
ki).

5. STTP then checks if there exists inconsistency between all (x′
ki, r

′
ki). If there

is no inconsistency, accept x′
ki, r

′
ki), and update the commitment.

6. Else, do as follows:
1. Set M ← ∅

2. While (∃ (x′
kj , r

′
kj)!= (x′

ki, r
′
ki):

(a) Check the specific (x′
kj , r

′
kj) and (x′

ki, r
′
ki).

a

(b) Identify the malicious pair (x′
km, r′km) with the commitment.

(c) Ignore the malicious pair (x′
km, r′km) and update M := M ∪m.

(d) Accepts (x′
ki, r

′
ki) that remain honest, and update the commitments.

3. For those m ∈M , go back to step 3.

a This happens at most n− 2 times, since each check eliminates at least one party.

Fig. 4. Our robust and publicly verifiable MPC protocol (online phase).
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4 Applications and Experimental Results

4.1 Network-A Benchmark

In this section we benchmark a modified neural network Network-A [18,23] with
our protocol (following the same benchmarking as in [26]). For the environment,
we have three computation servers, where up to two can be malicious. In addi-
tion, we set up a STTP party to provide robustness. We use the same parameters
for lattice cryptography primitives of [26], where the parameter of computation
security is 40 bits. Furthermore, we calculate the size of homomorphic encryp-
tion we used with our robust approach by [1], we have BGV encryption with 350
bits.

We ran our experiments on machines with 32GB RAM and 16 vCPUs. Below
is the benchmark of our computation online run time (in seconds), compared to
the SPDZ and [26] protocols. We observe that, compared to SPDZ, the running
time of our protocol is about 65x (see table 2).

SPDZ (LowGear) [26] Our protocol
≈ 0.0036s ≈ 0.135s ≈ 0.227s

Table 2. Comparison of efficiency of different protocols, benchmarking on network-A.
Columns 2 and 3 represent amortized computation times.

Furthermore, we also show that our protocol recovers quickly when a mali-
cious server is detected (see table 4.1). Since the malicious server will be elimi-
nated from the computation, the recovery time can be offset by having one less
server in the computation. In the experiment, we show the time to recover the
share from the malicious party plus the time of the computation continues with
the two remaining parties is not much different compared to the three-party
computation when no malicious behavior is detected.

Recovery time Recovery time + remaining computation
with two parties

Our protocol
with 3 parties

≈ 0.096s ≈ 0.211s ≈ 0.227s

Table 3. Time of recovery from malicious shares, recovery time plus remaining compu-
tation with two parties and run time if three party behaves honestly (All in amortized
measurement).

4.2 ML Inference Framework

In this subsection, we first present the design of a framework for privacy-preserving
machine learning (ML) inference, employing MPC protocols under malicious-
dishonest majority security settings, followed by the evaluation of the lattice-
based MPC protocol proposed in our study.
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Framework design. Our framework enables secure inference using a pre-
trained linear model, while ensuring the confidentiality of both the model and
the inference input data.

The linear model is trained on publicly available data, and model parame-
ters comprising weights (w) and biases (b), which are subsequently secret-shared
among computation parties involved in MPC protocol. Similarly, inference nor-
malized input data point(s) (xi) are transformed into secret shares to safeguard
user privacy. These secret shares are shared and distributed among computa-
tional parties, ensuring that no single computation party has access to the orig-
inal data or model parameters.

Although the client holds both the data and the model, heavy computation
is outsourced to MPC servers to address client resource limitations and to en-
able privacy-preserving computation in distributed settings. The client’s local
post-processing is minimal compared to the outsourced computation. The client
initiates the process by sending secret shares of the data, which are to be pro-
cessed, along with the secret shares of the weights and biases to the MPC servers.
These servers perform linear computations, specifically computing w·x+b, where
w represents the weights, x represents the input data, and b represents the bias.
This computation is performed on encrypted secret shares, ensuring the privacy
of the data.

Once the MPC servers have completed the necessary computations, the re-
sults are securely transmitted back to the client in encrypted form. Upon receipt,
the client decrypts these results to proceed with further data processing specific
to the model used. This includes the application of activation functions and
thresholding to finalize the inference process. For instances utilizing the Logis-
tic Regression model, the decrypted output is first processed through a logistic
function to map the computed values to probabilities, followed by a thresholding
step to categorize these probabilities into discrete class labels.

Framework evaluation. In this section, we define the evaluation framework to
evaluate the Lattice-based MPC protocol proposed in our study. We describe the
datasets, experiment settings, and metrics for validating the correctness and effi-
ciency of the proposed MPC protocol in performing ML inferences. Additionally,
we compare the performance of our Lattice-based protocol with MASCOT [19],
MASCOT* 5, SPDZ2k [8], and LowGear [20] MPC protocols, all evaluated under
the Malicious Dishonest Majority security setting.

Description of the datasets In this study, we assessed the performance of the
proposed MPC protocol on the Wisconsin Breast Cancer dataset [29] and a
subset of the Iris flower dataset [14].

The Wisconsin Breast Cancer dataset contains 569 instances with 30 numer-
ical features derived from digitized images of fine needle aspirates, labeled as
either benign or malignant. The Iris dataset consists of 150 samples across three
Iris species, each described by four morphological features. For this study, we
5 MASCOT* refers to the MASCOT protocol configured with multiple MACs to en-

hance the security parameter, making it a multiple of the prime length [18].
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used only the Iris-setosa and Iris-versicolor classes to create a balanced binary
classification task, selecting 30 samples per class for training and 20 per class
for testing. This setup ensures balanced training and an unbiased evaluation on
unseen data.

Experiment settings In this study, we conducted experiments to evaluate the
performance of a lattice-based MPC protocol, utilizing linear ML classifier, Lo-
gistic Regression. Our experiments were performed on Amazon Web Services
(AWS) Cloud Virtual Machines (VMs) under two configurations: first, with all
VMs situated within the same Cloud Service Provider (CSP) to ensure uniform
computational resources and network conditions; second, with each computa-
tional party hosted on different CSPs to simulate a distributed environment
with varying network conditions.

The Logistic Regression model was trained using the ml package available in
MP-SPDZ. Following the training phase, the weights and biases of these models
are extracted for evaluating lattice-based MPC protocol.

Assessing computation correctness To validate the correctness of computations
performed by the lattice-based MPC protocol, we used Accuracy as the evalua-
tion metric, which measures the proportion of correctly predicted instances out
of the total evaluated.

In our experiments, we compared the accuracy achieved in centralized set-
tings (evaluating plaintext data directly) with that obtained using the MPC pro-
tocol. This comparison confirmed the correctness of computations under MPC
and highlighted any potential efficiency losses due to its distributed nature.

The accuracy achieved with the MPC protocol (88.33% for the Wisconsin
Breast Cancer dataset and 100% for the Iris Flower dataset) matched the cen-
tralized settings. This demonstrates that our protocol performs computations
correctly, maintaining high precision comparable to traditional centralized meth-
ods while ensuring secure computation.

4.3 Comparative analysis of MPC protocols.

We conducted a comparative analysis of MPC protocols, focusing on three key
metrics: inference times, size of data exchange, and number of communication
rounds. The detailed analysis for each metric is presented as follows.

Inference Time. The inference time is defined as time required to compute an
output from a trained model using MPC. This performance metric is essential
for assessing the efficiency of MPC protocols in privacy-preserving application.

All VMs hosted on same CSP: Our analysis of inference times for vari-
ous Multi-Party Computation (MPC) protocols across the Iris and Breast Can-
cer datasets reveals no clear pattern in performance superiority except in the
case of Lattice-based protocol. The MACOT, MASCOT* (mama), SPDZ2k, and
LowGear protocols display closely competitive inference times on both datasets.

As shown in Table 4, the inference times observed for the Iris dataset are
similar across MASCOT, MASCOT*, SPDZ2k, and LowGear protocols. The
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difference among these protocols is less than 0.0003 seconds. A similar trend is
observable in the Breast Cancer Dataset.

All the VMs hosted on same CSPs All the VMs hosted on different CSPs

Protocol Iris Dataset Breast Cancer
Dataset Iris Dataset Breast Cancer

Dataset
MASCOT 0.00260 0.00470 0.36145 0.41660
MASCOT* 0.00290 0.00510 0.36160 0.41675
SPDZ2k 0.00270 0.00490 0.36095 0.41599
LowGear 0.00280 0.00500 0.36157 0.41672
Lattice 0.01430 0.07710 0.01760 0.11070

Table 4. Inference times (in seconds) of Malicious-Dishonest Majority MPC protocols

In contrast, the Lattice-based protocol exhibits higher inference times on
both datasets. However, it uniquely ensures operational continuity by allowing
computations to proceed without restart in the presence of malicious behavior.
Furthermore, it can detect and handle dishonest participants, guaranteeing pro-
tocol completion even under adversarial conditions. These robustness features,
not offered by other protocols, make the Lattice-based approach particularly
well-suited for security-critical applications.

All VMs on different CSPs: To simulate the scenario where each compu-
tation party is located on different Cloud Service Providers (CSPs), we utilized
virtual machines (VMs) on the same cloud service but deployed them in different
geographic locations. Specifically, we selected three AWS regions: N. Virginia,
N. California, and Ohio.

Table 4 shows inference times for the settings when all the VMs are located
in different geographic locations. For both the Iris and Breast Cancer datasets,
SPDZ2k achieved the lowest inference times among the traditional protocols,
with MASCOT, MASCOT*, and LowGear exhibiting only marginally higher
values, indicating similar computational overheads. The lattice-based protocol
only runs for 0.0176 seconds. This shows how amortizing many instances leads
to better utilization of hardware resources. With batching, multiple instances
are executed upon receiving an input element, and as result there will not exist
a situation where a party finishes its computation early and waits for the next
message, making the batched setting more robust to network delays.

Data Exchange. For the Iris Flower Dataset, each party in the Lattice-based
protocol sends 0.223 MB of data per party, resulting in global data exchange of
just 0.669 MB. This significantly contrasts with the other protocols, where the
global data sent ranges from 0.021928 to 0.022576 MB. Similarly, for the Wiscon-
sin Breast Cancer Dataset, each party in the Lattice-based protocol sends 2.25
MB of data, resulting in global data exchange of just 6.75 MB. For other MPC
protocols, the global data exchange for MASCOT, MASCOT*, and LowGear
protocols is 0.309856 MB, and 0.31048 MB for the SPDZ2k protocol.

Number of Rounds. Table 4.3 shows the comparative analysis of number of
rounds of various MPC protocols from Malicious Dishonest Majority security
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settings considered in our study. MASCOT, MASCOT* (mama), SPDZ2k, and
LowGear all follow a consistent pattern, with party 1 engaging in more rounds
compared to parties 2 and 3. This asymmetry is due to party 1’s additional role
as the coordination server, responsible for data distribution and result aggrega-
tion. In contrast, the lattice-based protocol requires substantially more rounds
(specifically, 1860 for each party). However, the rounds are only due to implemen-
tation considerations. Since we batch a lot of elements in one polynomial ring,
we send/open ring elements for each multiplication using Beaver triples. This is
different from the SPDZ protocol, where the wait is for multiple multiplications
and then they are sent in batch.

Rounds for Iris Dataset Rounds for Breast Cancer Dataset
MPC Protocol Party 1 Party 2 Party 3 Party 1 Party 2 Party 3

MASCOT 17 13 13 21 15 15
MASCOT* (mama) 17 13 13 21 15 15

SPDZ2k 17 13 13 21 15 15
LowGear 17 13 13 21 15 15
Lattice 200 200 200 1860 1860 1860

Table 5. Number of Rounds of Malicious Dishonest Majority MPC Protocols

It is important to note that when we conducted the experiments under both
configurations—computation parties located in the same region and those in dif-
ferent regions- the only metric that exhibited variation was the inference time,
which increased when computation parties were located in different regions due
to the added network latency. This observation underscores that while the effi-
ciency of the protocols in terms of data exchanged and rounds required remains
unaffected by geographic distribution, the actual performance time is influenced
by the network conditions between the participating parties.

4.4 Discussion

The lattice-based protocol exhibits slightly lower efficiency compared to SPDZ
protocols under normal conditions. However, in scenarios involving network la-
tency, it demonstrates greater stability due to its amortized characteristics. Com-
bined with its enhanced security properties, the lattice-based protocol holds cer-
tain advantages over SPDZ protocols.

5 Conclusions

In this paper we implement an MPC protocol that remains robust even under
a dishonest majority. Additionally, we explore the execution of batched MPC
instances and demonstrate the efficiency of our protocol. An interesting direc-
tion for future work is to optimize the protocol’s efficiency for specific machine
learning algorithms, thereby enhancing its practicality in real-world applications.
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